forked from paulvangentcom/python_corona_simulation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation_hospital.py
299 lines (239 loc) · 13.8 KB
/
simulation_hospital.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import sys
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from environment import build_hospital
from infection import infect, recover_or_die, compute_mortality, \
healthcare_infection_correction
from motion import update_positions, out_of_bounds, update_randoms,\
set_destination, check_at_destination, keep_at_destination, get_motion_parameters
from population import initialize_population, initialize_destination_matrix,\
set_destination_bounds, save_data
def update(frame, population, destinations, pop_size, infection_range=0.01,
infection_chance=0.03, recovery_duration=(200, 500), mortality_chance=0.02,
xbounds=[0.02, 0.98], ybounds=[0.02, 0.98], x_plot=[-0.1, 1],
y_plot=[-0.1, 1], wander_range_x=0.05, wander_range_y=0.05,
risk_age=55, critical_age=75, critical_mortality_chance=0.1,
risk_increase='quadratic', no_treatment_factor=3,
treatment_factor=0.5, healthcare_capacity=250, age_dependent_risk=True,
treatment_dependent_risk=True, visualise=True, verbose=True,
healthcare_workers=50, hospital_bounds=None, healthcare_worker_risk=0):
#add one infection to jumpstart
if frame == 1:
population[healthcare_workers + 1][6] = 1
#define motion vectors if destinations active and not everybody is at destination
active_dests = len(population[population[:,11] != 0]) # look op this only once
if active_dests > 0 and len(population[population[:,12] == 0]) > 0:
population = set_destination(population, destinations)
population = check_at_destination(population, destinations, wander_factor = 1)
if active_dests > 0 and len(population[population[:,12] == 1]) > 0:
#keep them at destination
population = keep_at_destination(population, destinations,
wander_factor = 1)
#update out of bounds
#define bounds arrays
if len(population[:,11] == 0) > 0:
_xbounds = np.array([[xbounds[0] + 0.02, xbounds[1] - 0.02]] * len(population[population[:,11] == 0]))
_ybounds = np.array([[ybounds[0] + 0.02, ybounds[1] - 0.02]] * len(population[population[:,11] == 0]))
population[population[:,11] == 0] = out_of_bounds(population[population[:,11] == 0],
_xbounds, _ybounds)
#update randoms
population = update_randoms(population, pop_size)
#for dead ones: set speed and heading to 0
population[:,3:5][population[:,6] == 3] = 0
#update positions
population = update_positions(population)
#find new infections
population, destinations = infect(population, pop_size, infection_range, infection_chance, frame,
healthcare_capacity, verbose, send_to_location = True,
location_bounds = hospital_bounds, destinations = destinations,
location_no = 1)
#apply risk factor to healthcare worker pool
if healthcare_worker_risk != 0: #if risk is not zero, affect workers
workers = population[0:healthcare_workers]
workers = healthcare_infection_correction(workers, healthcare_worker_risk)
population[0:healthcare_workers] = workers
infected_plot.append(len(population[population[:,6] == 1]))
#recover and die
population = recover_or_die(population, frame, recovery_duration, mortality_chance,
risk_age, critical_age, critical_mortality_chance,
risk_increase, no_treatment_factor, age_dependent_risk,
treatment_dependent_risk, treatment_factor, verbose)
#send cured back to population
population[:,11][population[:,6] == 2] = 0
fatalities_plot.append(len(population[population[:,6] == 3]))
if visualise:
#construct plot and visualise
spec = fig.add_gridspec(ncols=1, nrows=2, height_ratios=[5,2])
ax1.clear()
ax2.clear()
ax1.set_xlim(x_plot[0], x_plot[1])
ax1.set_ylim(y_plot[0], y_plot[1])
if hospital_bounds != None:
build_hospital(hospital_bounds[0], hospital_bounds[2],
hospital_bounds[1], hospital_bounds[3], ax1)
healthy = population[population[:,6] == 0][:,1:3]
ax1.scatter(healthy[:healthcare_workers][:,0],
healthy[:healthcare_workers][:,1],
marker= 'P', s = 2, color='green',
label='healthy')
ax1.scatter(healthy[healthcare_workers:][:,0],
healthy[healthcare_workers:][:,1],
color='gray', s = 2, label='healthy')
infected = population[population[:,6] == 1][:,1:3]
ax1.scatter(infected[:,0], infected[:,1], color='red', s = 2, label='infected')
immune = population[population[:,6] == 2][:,1:3]
ax1.scatter(immune[:,0], immune[:,1], color='green', s = 2, label='immune')
fatalities = population[population[:,6] == 3][:,1:3]
ax1.scatter(fatalities[:,0], fatalities[:,1], color='black', s = 2, label='dead')
#add text descriptors
ax1.text(x_plot[0],
y_plot[1] + ((y_plot[1] - y_plot[0]) / 8),
'timestep: %i, total: %i, healthy: %i infected: %i immune: %i fatalities: %i' %(frame,
len(population),
len(healthy),
len(infected),
len(immune),
len(fatalities)),
fontsize=6)
ax2.set_title('number of infected')
ax2.text(0, pop_size * 0.05,
'https://github.com/paulvangentcom/python-corona-simulation',
fontsize=6, alpha=0.5)
#ax2.set_xlim(0, simulation_steps)
ax2.set_ylim(0, pop_size + 100)
if treatment_dependent_risk:
infected_arr = np.asarray(infected_plot)
indices = np.argwhere(infected_arr >= healthcare_capacity)
ax2.plot([healthcare_capacity for x in range(len(infected_plot))], color='red',
label='healthcare capacity')
ax2.plot(infected_plot, color='gray')
ax2.plot(fatalities_plot, color='black', label='fatalities')
ax2.legend(loc = 1, fontsize = 6)
if treatment_dependent_risk:
ax2.plot(indices, infected_arr[infected_arr >= healthcare_capacity],
color='red')
#plt.savefig('render/%i.png' %frame)
return population
if __name__ == '__main__':
###############################
##### SETTABLE PARAMETERS #####
###############################
#set simulation parameters
simulation_steps = 5000 #total simulation steps performed
save_population = True #whether to dump population to data/population_{num}.npy
#size of the simulated world in coordinates
xbounds = [0.3, 1.3]
ybounds = [0, 1]
x_plot = [0, 1.3]
y_plot = [0, 1]
visualise = True #whether to visualise the simulation
verbose = True #whether to print infections, recoveries and deaths to the terminal
#population parameters
pop_size = 2000
mean_age=45
max_age=105
#motion parameters
mean_speed = 0.01 # the mean speed (defined as heading * speed)
std_speed = 0.01 / 3 #the standard deviation of the speed parameter
#the proportion of the population that practices social distancing, simulated
#by them standing still
proportion_distancing = 0
#when people have an active destination, the wander range defines the area
#surrounding the destination they will wander upon arriving
wander_range_x = 0.05
wander_range_y = 0.1
#illness parameters
infection_range=0.01 #range surrounding infected patient that infections can take place
infection_chance=0.03 #chance that an infection spreads to nearby healthy people each tick
recovery_duration=(200, 500) #how many ticks it may take to recover from the illness
mortality_chance=0.02 #global baseline chance of dying from the disease
#healthcare parameters
healthcare_capacity = 300 #capacity of the healthcare system
treatment_factor = 0.5 #when in treatment, affect risk by this factor
healthcare_workers = 0 #number of healthcare workers, must be smaller than population size
hospital_bounds = [0.05, 0.4, 0.25, 0.7] #[xmin, ymin, xmax, ymax]
healthcare_worker_risk = 0.2 #affect odds to get sick for healthcare workers with this factor
#risk parameters
age_dependent_risk = True #whether risk increases with age
risk_age = 55 #age where mortality risk starts increasing
critical_age = 75 #age at and beyond which mortality risk reaches maximum
critical_mortality_chance = 0.1 #maximum mortality risk for older age
treatment_dependent_risk = True #whether risk is affected by treatment
#whether risk between risk and critical age increases 'linear' or 'quadratic'
risk_increase = 'quadratic'
no_treatment_factor = 3 #risk increase factor to use if healthcare system is full
######################################
##### END OF SETTABLE PARAMETERS #####
######################################
#initalize population
population = initialize_population(pop_size, xbounds = xbounds, ybounds = ybounds)
population[:,13] = wander_range_x #set wander ranges to default specified value
population[:,14] = wander_range_y #set wander ranges to default specified value
#initialize destination matrix
destinations = initialize_destination_matrix(pop_size, 1)
#place hospital on map x(-2, -1.5) y(-0.5, 0.5)
#put hospital workers (first 50?) in their own bounds
#population[0:healthcare_workers], \
#destinations[0:healthcare_workers] = set_destination_bounds(population[0:healthcare_workers],
# destinations[0:healthcare_workers],
# hospital_bounds[0],
# hospital_bounds[1],
# hospital_bounds[2],
# hospital_bounds[3],
# dest_no=1)
#define figure
fig = plt.figure(figsize=(5,7))
spec = fig.add_gridspec(ncols=1, nrows=2, height_ratios=[5,2])
ax1 = fig.add_subplot(spec[0,0])
plt.title('infection simulation')
plt.xlim(xbounds[0] - 0.1, xbounds[1] + 0.1)
plt.ylim(ybounds[0] - 0.1, ybounds[1] + 0.1)
ax2 = fig.add_subplot(spec[1,0])
ax2.set_title('number of infected')
ax2.set_xlim(0, simulation_steps)
ax2.set_ylim(0, pop_size + 100)
infected_plot = []
fatalities_plot = []
#define arguments for visualisation loop
fargs = (population, destinations, pop_size, infection_range, infection_chance,
recovery_duration, mortality_chance, xbounds, ybounds, x_plot, y_plot,
wander_range_x, wander_range_y, risk_age, critical_age,
critical_mortality_chance, risk_increase, no_treatment_factor,
treatment_factor, healthcare_capacity, age_dependent_risk,
treatment_dependent_risk, visualise, verbose, healthcare_workers,
hospital_bounds, healthcare_worker_risk)
#start animation loop through matplotlib visualisation
if visualise:
animation = FuncAnimation(fig, update, fargs = fargs, frames = simulation_steps, interval = 33)
plt.show()
else:
#alternatively dry run simulation without visualising
for i in range(simulation_steps):
population = update(i, population, destinations, pop_size, infection_range, infection_chance,
recovery_duration, mortality_chance, xbounds, ybounds, x_plot, y_plot,
wander_range_x, wander_range_y, risk_age, critical_age,
critical_mortality_chance, risk_increase, no_treatment_factor,
treatment_factor, healthcare_capacity, age_dependent_risk,
treatment_dependent_risk, visualise, verbose, healthcare_workers,
healthcare_bounds, healthcare_worker_risk)
if len(population[population[:,6] == 1]) == 0 and i > 100:
print('\n-----stopping-----\n')
print('total dead: %i' %len(population[population[:,6] == 3]))
print('total immune: %i' %len(population[population[:,6] == 2]))
if save_population:
save_data(population, infected_plot, fatalities_plot)
sys.exit(0)
sys.stdout.write('\r')
sys.stdout.write('%i: healthy: %i, infected: %i, immune: %i, in treatment: %i, \
dead: %i, of total: %i' %(i, len(population[population[:,6] == 0]),
len(population[population[:,6] == 1]),
len(population[population[:,6] == 2]),
len(population[population[:,10] == 1]),
len(population[population[:,6] == 3]),
pop_size))
print('\n-----stopping after all infected recovered or died-----\n')
print('total dead: %i' %len(population[population[:,6] == 3]))
print('total immune: %i' %len(population[population[:,6] == 2]))
if save_population:
save_data(population, infected_plot, fatalities_plot)