-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdraft.tex
577 lines (549 loc) · 36.9 KB
/
draft.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
\DeclareSymbolFont{AMSb}{U}{msb}{m}{n}
\documentclass[11pt,a4paper,twoside,leqno,noamsfonts]{amsart}
\usepackage{setspace}
\linespread{1.34}
%\onehalfspacing
\usepackage[english]{babel}
\usepackage[dvipsnames]{xcolor}
\definecolor{britishracinggreen}{rgb}{0.0, 0.26, 0.15}
\definecolor{cobalt}{rgb}{0.0, 0.28, 0.67}
\usepackage[utopia]{mathdesign}
\DeclareSymbolFont{usualmathcal}{OMS}{cmsy}{m}{n}
\DeclareSymbolFontAlphabet{\mathcal}{usualmathcal}
\usepackage[a4paper,top=4cm,bottom=3cm,left=3.5cm,
right=3.5cm,bindingoffset=5mm]{geometry}
\usepackage[utf8]{inputenc}
\usepackage{braket,caption,comment,mathtools,stmaryrd}
\usepackage{multirow,booktabs,microtype}
\usepackage{latexsym}
\usepackage{todonotes}
\usepackage{fancyhdr}
%\renewcommand{\sectionmark}[1]{\markboth{\thesection\ #1}{}}
\pagestyle{fancy}
% Clear the header and footer
\fancyhead{}
\fancyfoot{}
% Set the right side of the footer to be the page number
\fancyfoot[R]{\thepage}
\addtolength{\headheight}{\baselineskip}
%\fancyhead[RE]{\rightmark}
%\fancyhead[RE]{}
\usepackage{soul} % per testo barrato
\usepackage[colorlinks,bookmarks]{hyperref} %
\hypersetup{colorlinks,%
citecolor=britishracinggreen,%
filecolor=black,%
linkcolor=cobalt,%
urlcolor=black}
\setcounter{tocdepth}{2}
%\setcounter{section}{-1}
\numberwithin{equation}{section}
\input{command}
\DeclareRobustCommand{\subtitle}[1]{\\#1}
\title[Exponential Integrals]{Exponential Integrals\\ [1ex]
}
\author{
Veronica Fantini
}
%\address{SISSA Trieste, Via Bonomea 265, 34136 Trieste, Italy}
%\email{ [email protected]}
%
\begin{document}
\hbadness=150
\vbadness=150
%
%\begin{abstract}
%We show how wall-crossing formulas in coupled $2d$-$4d$ systems, introduced by Gaiotto, Moore and Neitzke, can be interpreted geometrically in terms of the deformation theory of holomorphic pairs, given by a complex manifold together with a holomorphic vector bundle. The main part of the paper studies the relation between scattering diagrams and deformations of holomorphic pairs, building on recent work by Chan, Conan Leung and Ma.
%\end{abstract}
%
\maketitle
%
%
%
{
\hypersetup{linkcolor=black}
\tableofcontents}
\section{Introduction}
%\begin{example}[Airy]
%The Airy equation is
%\begin{equation}
%y''=xy
%\end{equation}
% and a system of solutions is given by (see DLMF)
%
%\begin{align*}
%&Ai(x)=\frac{1}{2\pi i}\int_{\infty e^{-i\pi/3}}^{\infty e^{i\pi/3}}e^{t^3/3-xt}dt\\
%&Bi(x)=\frac{1}{2\pi}\int_{-\infty}^{\infty e^{-i\pi/3}}e^{t^3/3-xt}dt+\frac{1}{2\pi}\int_{-\infty}^{\infty e^{i\pi/3}}e^{t^3/3-xt}dt
%\end{align*}
%
%
%
%Let $\psi(x)\defeq\sum_{n\geq 0}a_nx^{-n}$ be the asymptotic expansion of $Ai(x)$ as $x\to\infty$: from DLMF and Sauzin
%
%\begin{equation}
%Ai(x)\sim \frac{e^{-2/3x^{3/2}}}{2\sqrt{\pi}x^{1/4}}\sum_{n\geq 0}(-1)^n\frac{1}{2^{n+1}\pi n!}\Gamma\left(n+\frac{5}{6}\right)\Gamma\left(n+\frac{1}{6}\right)\left(\frac{3}{2}x^{-3/2}\right)^n
%\end{equation}
%and $a_n\defeq (-1)^n\frac{1}{2\pi n!}\Gamma\left(n+\frac{5}{6}\right)\Gamma\left(n+\frac{1}{6}\right)\left(\frac{3}{4}\right)^n$. Analougusly, let $\varphi(x)\defeq\sum_{n\geq 0}b_nx^{-n}$ be the asymptotic expansion of $Bi(x)$ as $x\to\infty$: from DLMF and Sauzin
%
%\begin{equation}
%Bi(x)\sim \frac{e^{2/3x^{3/2}}}{\sqrt{\pi}x^{1/4}}\sum_{n\geq 0}\frac{1}{2^{n+1}\pi n!}\Gamma\left(n+\frac{5}{6}\right)\Gamma\left(n+\frac{1}{6}\right)\left(\frac{3}{2}x^{-3/2}\right)^n
%\end{equation}
%
%and $b_n\defeq \frac{1}{2\pi n!}\Gamma\left(n+\frac{5}{6}\right)\Gamma\left(n+\frac{1}{6}\right)\left(\frac{3}{4}\right)^n$.
%\begin{prop}
%$\psi(x)$ and $\varphi(x)$ are resurgent series.
%\end{prop}
%\begin{proof}
%Let $\hat{\psi}(\zeta)=\frac{1}{2\pi}\sum_{n\geq 0}a_{n-1}\frac{\zeta^n}{(n-1)!}$, mathematica says
%\begin{equation}
%\hat{\psi}(\zeta)=-\frac{5}{48} F_1(7/6,11/6,2,-3/4\zeta)
%\end{equation}
%which has a log singularity at $\zeta=-4/3$, namely
%\begin{equation}
%\hat{\psi}(\zeta+4/3)=\log(\zeta)\hat{\psi}_{-4/3}(\zeta)+\text{hol.fct}
%\end{equation}
%where $\hat{\psi}_{-4/3}(\zeta)$ is holomorphic in a neighbourhood of the origin. In particular, $\hat{\psi}_{-4/3}(\zeta)=-\frac{1}{2}\varphi(\zeta)$.
%Now, let $\hat{\varphi}(\zeta)=\frac{1}{2\pi}\sum_{n\geq 0}b_{n-1}\frac{\zeta^n}{(n-1)!}$, mathematica says
%\begin{equation}
%\hat{\varphi}(\zeta)=\frac{5}{48} F_1(7/6,11/6,2,3/4\zeta)
%\end{equation}
%which has a log singularity at $\zeta=4/3$, namely
%\begin{equation}
%\hat{\varphi}(\zeta-4/3)=\log(\zeta)\hat{\varphi}_{4/3}(\zeta)+\text{hol.fct}
%\end{equation}
%where $\hat{\varphi}_{4/3}(\zeta)$ is holomorphic in a neighbourhood of the origin. In particular, $\hat{\varphi}_{4/3}(\zeta)=\frac{1}{2}\psi(\zeta)$.
%\end{proof}
%
%Comment on the asymptotic expansion of $Ai(x)$ and $Bi(x)$: the prepared form of the Airy equation is obtained after the change of coordinates $z=x^{3/2}$ and it reads
%
%\begin{equation}\label{prepform}
%y''(z)+\frac{y'(z)}{3z}=\frac{4}{9}y(z)
%\end{equation}
%
%In particular, its Borel trasform is
%\begin{equation}
%\zeta^2\hat{y}-\frac{1}{3}\ast (\zeta\hat{y})=\frac{4}{9}\hat{y}
%\end{equation}
%and we read the singularity of the Borel transform as solution of $z^2-4/9=0$, which are $z=\pm 2/3$. These are indeed the exponent of the exponential factor in the asymptotic of $Ai(z)$ and $Bi(z)$ respectively.
%
%Alternatively, from the theory of ODE we can look for a solution of \eqref{prepform} of the form
%\begin{equation}
%y(z)=\sum_{k\in\Z^2}U^ke^{-k\cdot\lambda z}z^{-\tau\cdot k}w_{k}(z)
%\end{equation}
%where $\lambda=(\lambda_1,\lambda_2)$ with $\lambda_i^2-4/9=0$, $\tau=(\tau_1,\tau_2)$ with $\tau_i=1/6$ and $w_k(z)\in\C[[z^{-1}]]$ is a formal series. Plugging in the ansatz in \eqref{prepform}, we fins that the only non zero solutions $w_k$ occurs for $k=(1,0)$ and $k=(0,1)$, meaning that the formal integral of the Airy equation is given by
%\begin{equation}
%y(z)=U_1e^{-2/3z}z^{-1/6}w_{(1,0)}(z)+U_2e^{2/3z}z^{-1/6}w_{(0,1)}(z).
%\end{equation}
%The latter expression can be compared with the asymptotic behaviour of $Ai(z)+Bi(z)$ as $z\to\infty$. In particular, $w_{k}$ solves the following homogeneus equation:
%\begin{align*}
%\left(\partial_z^2-\frac{4}{3}\partial_z+\frac{5}{36z^2}\right)w_{(1,0)}=0\\
%\left(\partial_z^2+\frac{4}{3}\partial_z+\frac{5}{36z^2}\right)w_{(0,1)}=0
%\end{align*}
%Assuming $w_{(1,0)}=1+\sum_{n\geq 1}a_n^+z^{-n}$ and $w_{(0,1)}=1+\sum_{n\geq 1}a_n^-z^{-n}$ we get \[a_n^+=(-1)^n\left(\frac{3}{4}\right)^n\frac{\Gamma(n+\frac{1}{6})\Gamma(n+\frac{5}{6})}{2\pi n!}=a_n\] and \[a_n^-=\left(\frac{3}{4}\right)^n\frac{\Gamma(n+\frac{1}{6})\Gamma(n+\frac{5}{6})}{2\pi n!}=b_n.\]
%
%Now, we investigate the exponential integral
%\begin{equation}
%I(z)\defeq\int_{\Gamma} \exp(-z\left(\frac{x^3}{3}-x\right))dx
%\end{equation}
%where $\Gamma$ is a suitable countour. By simple computation we notice that $I(z)=-2\pi iz^{-1/3}Ai(x)$ (where $z=x^{3/2}$). In particular, $I(z)$ is a solution of
%\begin{equation}\label{eq:Iold}
%I''-\frac{4}{9}I+\frac{I'}{z}-\frac{1}{9}\frac{I}{z^2}=0
%\end{equation}
% The Borel trasform of $\hat{I}(z)$ can be computed directly from the equation \eqref{eq:I}, namely the Borel transform of equation \eqref{eq:I} is
%\begin{equation}
%\zeta^2 \hat{I}-\frac{4}{9}\hat{I}-1\ast\zeta\hat{I}-\frac{1}{9}\zeta\ast\hat{I}=0
%\end{equation}
%\begin{equation}
%\zeta^2 \hat{I}-\frac{4}{9}\hat{I}-\int_0^\zeta\zeta'\hat{I}(\zeta')d\zeta '-\frac{1}{9}\int_0^\zeta(\zeta-\zeta')\hat{I}(\zeta')d\zeta'=0
%\end{equation}
%\begin{align*}
%2\zeta\hat{I}+\zeta^2\hat{I}'-\frac{4}{9}\hat{I}'-\zeta\hat{I}-\frac{1}{9}\int_0^\zeta\hat{I}(\zeta')d\zeta'=0\\
%\hat{I}+\zeta\hat{I}'+2\zeta\hat{I}'+\zeta^2\hat{I}''-\frac{4}{9}\hat{I}''-\frac{1}{9}\hat{I}=0
%\end{align*}
%\begin{equation}
%(\zeta^2-\frac{4}{9})\hat{I}''+3\zeta\hat{I}'+(1-\frac{1}{9})\hat{I}=0
%\end{equation}
%and for some costants $c_1,c_2\in\C$ the solutions are
%\begin{equation}
%\hat{I}(\zeta)=\frac{9\zeta c_1}{4\sqrt{\frac{4}{9}-\zeta^2}}+c_2
%\end{equation}
%\end{example}
%\textcolor{red}{Is $F_1(7/6,11/6,2,3/4\zeta)$ algebraic?}
\section{Resurgence of exponential integrals}
Let $X$ be a $N-\dim$ manifold, $f\colon X\to\C$ be a holomorphic Morse function with only simple critical points, and $\nu\in\Gamma(X,\Omega^N)$, and set
\begin{equation}
I(z)\defeq\int_{\mathcal{C}}e^{-zf}\nu
\end{equation}
where $\mathcal{C}$ is a suitable countur such that the integral is well defined.
For any Morse cirtial points $x_\alpha$ of $f$, the saddle point approximation gives the following formal series
\begin{equation}
I_{\alpha}(z)\defeq\int_{\mathcal{C}_\alpha}e^{-zf}\nu\sim \tilde{I}_{\alpha}\defeq e^{-zf(x_\alpha)}(2\pi)^{N/2} z^{-N/2}\sum_{n\geq 0}a_{\alpha,n}z^{-n}.
\end{equation}
\begin{theorem}\label{thm:maxim} Let $\tilde{\varphi}_{\alpha}(z)\defeq e^{-zf(x_\alpha)}(2\pi)^{N/2} \sum_{n\geq 0}a_{\alpha,n}z^{-n}$
\begin{enumerate}
\item $\tilde{\varphi}_\alpha$ is Gevrey-1;
\item $\hat{\varphi}(\zeta)\defeq\mathcal{B}(\tilde{\varphi})$ is a germ of analytic function at $\zeta=\zeta_{\alpha}=f(x_\alpha)$;
\item the following formual holds true
\begin{multline}\label{formula1}
\hat{\varphi}_{\alpha}(\zeta)=\partial^{N/2}_{\zeta, \text{based at }\zeta_\alpha}\left(\int_{f^{-1}(\zeta_\alpha)}^{f^{-1}(\zeta)}\nu\right)=\Gamma(-N/2)\int_{\zeta_\alpha}^\zeta (\zeta-\zeta')^{-N/2}\int_{f^{-1}(\zeta')}\frac{\nu}{df} d\zeta'
\end{multline}
\end{enumerate}
\end{theorem}
\begin{definition}
Let $\alpha\in (0,1)$, then the $\alpha$-Caputo's derivative of a smooth fucntion $f$ is defined as
\begin{equation}
\partial_x^{\alpha}f(x)\defeq\frac{1}{\Gamma(1-\alpha)}\int_0^x(x-s)^{-\alpha}f^{'}(s)ds
\end{equation}
\end{definition}
\begin{example}[Airy]
Let $f(t)=\frac{t^3}{3}-t$ and \[I(z)\defeq\int_{\gamma} e^{-zf(t)}\text{dt}\]
where $\gamma$ is a countour where the integral is well defined.
By the change of coordinates $z=x^{3/2}$, $I(z)=-2\pi iz^{-1/3}Ai(x)$ where \[Ai(x)\defeq \frac{1}{2\pi i}\int_{-\infty e^{-i\frac{\pi}{3}}}^{\infty e^{i\frac{\pi}{3}}} e^{\frac{t^3}{3}-zt}\text{dt}\]
hence $I(z)$ solves the following ODE\footnote{$Ai(x)$ solves the Airy equation $y''=xy$.}
\begin{equation}\label{eq:I}
I''(z)-\frac{4}{9}I(z)+\frac{I'(z)}{z}-\frac{1}{9}\frac{I(z)}{z^2}=0
\end{equation}
A formal solution of \eqref{eq:I} can be computed by making the following ansatz
\begin{equation}
\tilde{I}(z)=\sum_{k\in\N^2}U^ke^{-\lambda\cdot k z}z^{-\tau\cdot k}w_k(z)
\end{equation}
with $U^{(k_1,k_2)}=U_1^{k_1}U_2^{k_2}$ and $U_1,U_2\in\C$ are constant parameter, $\lambda=(\frac{2}{3},-\frac{2}{3})$, $\tau=(\frac{1}{2},\frac{1}{2})$, and $\tilde{w}_k(z)\in\C[[z^{-1}]]$. In addition, we can check that the only non zero $\tilde{w}_k(z)$ occurs at $k=(1,0)$ and $k=(0,1)$, therefore
\begin{equation}
\tilde{I}(z)=U_1e^{-2/3z}z^{-1/2}\tilde{w}_{+}(z)+U_2e^{2/3z}z^{-1/2}\tilde{w}_{-}(z)
\end{equation}
where from now on we denote $\tilde{w}_+(z)=\tilde{w}_{(1,0)}(z)$ and $\tilde{w}_-(z)=\tilde{w}_{(0,1)}(z)$. In particular, $\tilde{w}_+(z)$ and $\tilde{w}_-(z)$ are formal solution of
\begin{align}
\label{eq:w+} \tilde{w}_+''-\frac{4}{3}\tilde{w}_+'+\frac{5}{36}\frac{\tilde{w}_+}{z^2}=0\\
\label{eq:w-} \tilde{w}_-''+\frac{4}{3}\tilde{w}_-'+\frac{5}{36}\frac{\tilde{w}_-}{z^2}=0
\end{align}
Taking the Borel transform of \eqref{eq:w+}, \eqref{eq:w-} we get
\begin{align*}
&\zeta^2\hat{w}_{+}(\zeta)+\frac{4}{3}\zeta\hat{w}_{+}+\frac{5}{36}\zeta\ast\hat{w}_{+}=0\\
&\zeta^2\hat{w}_{+}(\zeta)+\frac{4}{3}\zeta\hat{w}_{+}+\frac{5}{36}\int_0^\zeta(\zeta-\zeta')\hat{w}_{+}(\zeta')d\zeta'=0
\end{align*}
\begin{align*}
&\zeta^2\hat{w}_{-}(\zeta)-\frac{4}{3}\zeta\hat{w}_{-}+\frac{5}{36}\zeta\ast\hat{w}_{-}=0\\
&\zeta^2\hat{w}_{-}(\zeta)-\frac{4}{3}\zeta\hat{w}_{-}+\frac{5}{36}\int_0^\zeta(\zeta-\zeta')\hat{w}_{-}(\zeta')d\zeta'=0
\end{align*}
and taking derivatives we get
\begin{align*}
&\zeta(\frac{4}{3}+ \zeta)\hat{w}_{+}''+(\frac{8}{3}+4\zeta)\hat{w}_+'+\frac{77}{36}\hat{w}_{+}=0 & \\
&\frac{4}{3}\zeta( 1+ \frac{3}{4}\zeta)\hat{w}_{+}''+(\frac{8}{3}+4\zeta)\hat{w}_+'+\frac{77}{36}\hat{w}_{+}=0 & \\
&\qquad u(1-u)\hat{w}_+''(u)+(2-4u)\hat{w}_+'(u)-\frac{77}{36}\hat{w}_+(u)=0 & u=-\frac{3}{4}\zeta\\
%&\qquad u(1-u)\hat{w}_-''(u)+(2-4u)\hat{w}_-'(u)-\frac{77}{36}\hat{w}_-(u) & u=\frac{3}{4}\zeta
\end{align*}
\begin{align*}
&\zeta(-\frac{4}{3}+ \zeta)\hat{w}_{-}''+(-\frac{8}{3}+4\zeta)\hat{w}_-'+\frac{77}{36}\hat{w}_{-}=0 & \\
&\frac{4}{3}\zeta(-1+ \frac{3}{4}\zeta)\hat{w}_{-}''+(-\frac{8}{3}+4\zeta)\hat{w}_-'+\frac{77}{36}\hat{w}_{-}=0 & \\
&\qquad u(1-u)\hat{w}_-''(u)+(2-4u)\hat{w}_-'(u)-\frac{77}{36}\hat{w}(u) & u=\frac{3}{4}\zeta
\end{align*}
Notice that the latter equations are hypergeometric, hence a solution is given by
\begin{align}
\label{hat+}\hat{w}_+(\zeta)=\mathit{c}_1 \, {}_{1}F_{2}\left(\frac{7}{6},\frac{11}{6},2,-\frac{3}{4}\zeta\right)\\
\label{hat-}\hat{w}_-(\zeta)=\mathit{c}_2 \, {}_{1}F_{2}\left(\frac{7}{6},\frac{11}{6},2,\frac{3}{4}\zeta\right)
\end{align}
for some constants $\mathit{c}_1, \mathit{c}_2\in\C$ (see DLMF 15.10.2). In addition $\hat{w}_{\pm}(\zeta)$ have a log singularity respectively at $\zeta=\mp\frac{4}{3}$, therefore they are $\lbrace\mp\frac{4}{3}\rbrace $-resurgent functions.\footnote{The solution we find are equal to the ones in DLMF $\mathsection 9.7$. They also agree with slide 10 of Maxim's talk for ERC and with the series (6.121) in Sauzin's book. However they do not agree with (2.16) in Mari\~no's Diablerets.}
\begin{remark}
$\hat{w}_{+}(\zeta)$ is Laplace summable along the positive real axis, and it can be analyticaly continued on $\C\setminus -\frac{4}{3}\R_{\leq 0}$ with (see 15.2.3 DLMF)
\begin{align*}
\hat{w}_+(\zeta+i0)-\hat{w}_+(\zeta-i0)&=-\frac{36}{5}i(-\frac{3}{4}\zeta-1)^{-1}\sum_{k\geq 0}\frac{(5/6)_n(1/6)_n}{\Gamma(n)n!}(1+\frac{3}{4}\zeta)^n &\zeta<-\frac{4}{3}\\
&=-\frac{36}{5}i(-\frac{3}{4}\zeta-1)^{-1}\left(\frac{5}{144} (4 + 3 \zeta){}_{1}F_{2}\left(\frac{7}{6},\frac{11}{6},2,1+\frac{3}{4}\zeta\right)\right) &\\
&=\mathbf{i}\,\,{}_{1}F_{2}\left(\frac{7}{6},\frac{11}{6},2,1+\frac{3}{4}\zeta\right) &\\
&=\mathbf{i}\hat{w}_{-}(\zeta+\frac{4}{3}) &
\end{align*}
Anolougusly, $\hat{w}_-(\zeta)$ is Laplace summable along the negative real axis, and it jumps across the branch cut $\frac{4}{3}\R_{\geq 0}$ as
\begin{align*}
\hat{w}_-(\zeta+i0)-\hat{w}_-(\zeta-i0)&=\frac{36}{5}i(\frac{3}{4}\zeta-1)^{-1}\sum_{k\geq 0}\frac{(5/6)_n(1/6)_n}{\Gamma(n)n!}(1-\frac{3}{4}\zeta)^n & \zeta>\frac{4}{3}\\
&=\frac{36}{5}i(\frac{3}{4}\zeta-1)^{-1}\left(-\frac{5}{144} (-4 + 3 \zeta){}_{1}F_{2}\left(\frac{7}{6},\frac{11}{6},2,1-\frac{3}{4}\zeta\right)\right) &\\
&=-\mathbf{i}\,\,{}_{1}F_{2}\left(\frac{7}{6},\frac{11}{6},2,1-\frac{3}{4}\zeta\right) &\\
&=-\mathbf{i}\hat{w}_{+}(\zeta-\frac{4}{3}) &
\end{align*}
These relations manifest the resurgence property of $\tilde{I}$, indeed near the singularities in the Borel plane of either $\hat{w}_+$ or $\hat{w}_-$, $\hat{w}_-$ and $\hat{w}_+$ respectively contribute to the jump of the former solution.
\end{remark}
%\begin{remark}
%In \cite{Marino-diableret}, Mari\~{n}o studies the example of the Airy function and its resurgent properties. According to his notation
%\begin{equation}
%Ai(x)=\frac{1}{2x^{1/4}\sqrt{\pi}}e^{-\frac{2}{3}x^{3/2}}\varphi_1(x^{-3/2})
%\end{equation}
%\begin{equation}
%Bi(x)=\frac{1}{2x^{1/4}\sqrt{\pi}}e^{\frac{2}{3}x^{3/2}}\varphi_2(x^{-3/2})
%\end{equation}
%with \[\varphi_{1,2}(z)=\sum_{k\geq 0}\frac{1}{2\pi}\left(\mp\frac{3}{4}\right)^k\frac{\Gamma\left(k+\frac{1}{6}\right)\Gamma\left(k+\frac{5}{6}\right)}{k!}z^k.\]
%In particular, the Borel transform of $\varphi_1(z)$ and $\varphi_2(z)$ are respectively
%\begin{align}
%\label{Marino_hat}
%\hat{\varphi}_1(\zeta)&={}_1F_2\left(\frac{1}{6},\frac{5}{6};1;-\frac{3}{4}\zeta\right)\\
%\label{Marino_hat2}\hat{\varphi}_2(\zeta)&={}_1F_2\left(\frac{1}{6},\frac{5}{6};1;\frac{3}{4}\zeta\right)
%\end{align}
% In particular, we notice that $\hat{w}_+(\zeta)$ and $\hat{w}_-(\zeta)$ in \eqref{eq:w+}, \eqref{eq:w-} are (up to a constant) the first derivatives of
%\begin{align*}
%\hat{w}_+(\zeta)&\propto\frac{\dd}{\dd\zeta}\hat{\varphi}_1(\zeta)\\
%\hat{w}_-(\zeta)&\propto\frac{\dd}{\dd\zeta}\hat{\varphi}_2(\zeta)
%\end{align*}
%\end{remark}
Our next goal is to prove that the Borel transform of $\tilde{I}(z)$ can be written in terms of $1/f'(f^{-1}(\zeta))$, namely formula \eqref{formula1}. It is convenient to consider the two asymptotic formal solutions separately, namely we define
\begin{align}
\tilde{I}_{-1}(z)\defeq e^{-2/3z}z^{-1/2}\tilde{w}_+(z)=\colon z^{-1/2}\tilde{u}_+(z) \\
\tilde{I}_{1}(z)\defeq e^{2/3z}z^{-1/2}\tilde{w}_-(z)=\colon z^{-1/2}\tilde{u}_-(z)
\end{align}
In particular, $\tilde{u}_{\pm}(z)$ are solutions of
\begin{equation}\label{eq:u}
\tilde{u}''(z)-\frac{4}{9}\tilde{u}(z)+\frac{5}{36}\frac{\tilde{u}(z)}{z^2}=0
\end{equation}
with asymptotic behaviour $\tilde{u}_\pm(z)\sim O(e^{\pm 2/3 z})$ as $z\to\infty$.
The Borel transforms $\hat{u}_{\pm}(\zeta)$ solve the same equation
\begin{align*}
&\zeta^2\hat{u}-\frac{4}{9}\hat{u}+\frac{5}{36}\zeta\ast\hat{u}\\
&\zeta^2\hat{u}-\frac{4}{9}\hat{u}+\frac{5}{36}\int_0^\zeta(\zeta-\zeta')\hat{u}(\zeta')d\zeta'\\
&\text{taking derivatives is equivalent to} \\
&(\zeta^2-\frac{4}{9})\hat{u}''(\zeta)+4\zeta\hat{u}'(\zeta)+\frac{77}{36}\hat{u}(\zeta)=0
\end{align*}
and Mathematica gives the following solutions
\begin{align*}
\hat{u}(\zeta)&=c_1 \, {}_{1}F_{2}\left(\frac{7}{12},\frac{11}{12},\frac{1}{2},\frac{9}{4}\zeta^2\right) +\frac{3i}{2}\zeta c_2 \, {}_{1}F_{2}\left(\frac{13}{12},\frac{17}{12},\frac{3}{2},\frac{9}{4}\zeta^2\right)= &\\
&=c_1\frac{\Gamma(\frac{13}{12})\Gamma(\frac{17}{12})}{2\sqrt{\pi}}\left({}_{1}F_{2}\left(\frac{7}{12},\frac{11}{12},\frac{1}{2},\frac{1}{2}-\frac{3}{4}\zeta\right)- {}_{1}F_{2}\left(\frac{7}{12},\frac{11}{12},\frac{1}{2},\frac{1}{2}+\frac{3}{4}\zeta\right)\right) & \text{see DLMF 15.8.27} \\
&\qquad +\frac{3i}{2}\zeta c_2 \left(\frac{\Gamma(\frac{7}{12})\Gamma(\frac{11}{12})}{3\zeta\Gamma(-\frac{1}{2})\Gamma(2)}\right)\left( {}_{1}F_{2}\left(\frac{7}{6},\frac{11}{6},{2},\frac{1}{2}-\frac{3}{4}\zeta\right)-{}_{1}F_{2}\left(\frac{7}{6},\frac{11}{6},{2},\frac{1}{2}+\frac{3}{4}\zeta\right)\right) & \text{see DLMF 15.8.28}\\
&=\left(c_1\frac{\Gamma(\frac{13}{12})\Gamma(\frac{17}{12})}{2\sqrt{\pi}} -c_2i\frac{\Gamma(\frac{7}{12})\Gamma(\frac{11}{12})}{4\sqrt{\pi}}\right)\, {}_{1}F_{2}\left(\frac{7}{6},\frac{11}{6},2,\frac{1}{2}-\frac{3}{4}\zeta\right) + & \\
&\qquad\qquad +\left(c_1\frac{\Gamma(\frac{13}{12})\Gamma(\frac{17}{12})}{2\sqrt{\pi}} +c_2i\frac{\Gamma(\frac{7}{12})\Gamma(\frac{11}{12})}{4\sqrt{\pi}}\right)\, {}_{1}F_{2}\left(\frac{7}{6},\frac{11}{6},2,\frac{1}{2}+\frac{3}{4}\zeta\right) &
\end{align*}
Since $\hat{u}_+$ has a simple singularity at $\zeta=-2/3$ and $\hat{u}_-$ has a simple singularity at $\zeta=2/3$, we have
\begin{align*}
\hat{u}_+(\zeta)&=C_1 T_{-2/3} {}_{1}F_{2}\left(\frac{7}{6},\frac{11}{6},2,-\frac{3}{4}\zeta\right)=C_1 T_{-2/3}\hat{w}_+(\zeta)\\
\hat{u}_-(\zeta)&= C_2 T_{2/3} {}_{1}F_{2}\left(\frac{7}{6},\frac{11}{6},2,\frac{3}{4}\zeta\right)= C_2 T_{2/3}\hat{w}_-(\zeta) & \\
%&=C_3 T_{-2/3}\textcolor{red}{\left(\frac{3}{2\sqrt{\zeta}}\right)^{-1}\partial^{1/2}_{\zeta} {}_{1}F_{2}\left(\frac{2}{3},\frac{4}{3},\frac{3}{2},-\frac{3}{4}\zeta\right)}+ C_4\textcolor{red}{\left(\frac{3}{2\sqrt{\zeta}}\right)^{-1}\partial^{1/2}_\zeta {}_{1}F_{2}\left(\frac{2}{3},\frac{4}{3},\frac{3}{2},\frac{3}{4}\zeta\right)}
\end{align*}
\begin{claim}\label{claim1}
\begin{equation}
\hat{w}_+(\zeta-2/3)=\frac{1}{\sqrt{\pi}}\int_{-2/3}^{\zeta}(\zeta-s)^{-1/2}\frac{1}{f'(u)}ds \,\,\qquad s=f(u)
\end{equation}
\end{claim}
\begin{lemma}
The following identity holds true
\begin{equation}
{}_2F_1\left(\frac{1}{3},\frac{2}{3};\frac{1}{2};\frac{9}{4}\zeta^2\right)=\frac{1}{1-u^2}\qquad \zeta=\frac{u^3}{3}-u
\end{equation}
\end{lemma}
\begin{proof}
\begin{align*}
{}_2F_1\left(\frac{1}{3},\frac{2}{3};\frac{1}{2};\frac{9}{4}\zeta^2\right)&=2\cos\left(\frac{1}{3}\arcsin\left(\frac{3}{2}\zeta\right)\right)(4-9\zeta^2)^{-1/2} & \text{Mathematica [Fullsimplify] } \\
&=\frac{\cos(y)}{\cos(3y)} & 3y=\arcsin\left(\frac{3}{2}\zeta\right)\\
&=\frac{\cos(y)}{\cos(2y)\cos(y)-\sin(2y)\sin(y)} & \\
&=\frac{1}{\cos(2y)-2\sin^2(y)} & \\
&=\frac{1}{1-4\sin^2(y)} & \zeta=2\sin(y)-\frac{8}{3}\sin^3(y)
\end{align*}
Therefore, if $u\defeq -2\sin(y)$, we have $\zeta=\frac{u^3}{3}-u=f(u)$ and \[{}_2F_1\left(\frac{1}{3},\frac{2}{3};\frac{1}{2};\frac{9}{4}\zeta^2\right)=\frac{1}{1-u^2}=-\frac{1}{f'(u)}\]
\end{proof}
Hence claim \eqref{claim1} is equivalent to
\begin{claim}\label{claim 2}
\begin{equation}
\hat{w}_+(\zeta-2/3)=-\frac{1}{\sqrt{\pi}}\int_{-2/3}^{\zeta}(\zeta-s)^{-1/2}{}_2F_1\left(\frac{1}{3},\frac{2}{3};\frac{1}{2};\frac{9}{4}s^2\right)ds
\end{equation}
\end{claim}
Let us study the RHS of claim \eqref{claim 2}
\begin{align*}
\frac{1}{\sqrt{\pi}}\int_{-2/3}^{\zeta}(\zeta-s)^{-1/2}{}_2F_1\left(\frac{1}{3},\frac{2}{3};\frac{1}{2};\frac{9}{4}s^2\right)ds&= \frac{2}{\sqrt{\pi}}\int_{-2/3}^{\zeta}(\zeta-s)^{-1/2} {}_2F_1\left(\frac{2}{3},\frac{4}{3};\frac{3}{2};\frac{1}{2}-\frac{3s}{4}\right)ds+ &\\
&\quad +\frac{2}{\sqrt{\pi}}\int_{-2/3}^{\zeta}(\zeta-s)^{-1/2} {}_2F_1\left(\frac{2}{3},\frac{4}{3};\frac{3}{2};\frac{1}{2}+\frac{3s}{4}\right)ds & 15.8.27 \text{ DLMF} \\
&=\frac{4i}{\sqrt{3\pi}}\int_{1}^{\zeta'}(\zeta'-t)^{-1/2} {}_2F_1\left(\frac{2}{3},\frac{4}{3};\frac{3}{2};t\right)dt+ & \zeta'=\frac{1}{2}-\frac{3}{4}\zeta\\
&\quad +\frac{4}{\sqrt{3\pi}}\int_{0}^{\zeta''}(\zeta''-t)^{-1/2} {}_2F_1\left(\frac{2}{3},\frac{4}{3};\frac{3}{2};t\right)dt & \zeta''=\frac{1}{2}+\frac{3}{4}\zeta
\end{align*}
By definition ${}_2F_1\left(\frac{2}{3},\frac{4}{3};\frac{3}{2};t\right)=\sum_{n\geq 0}\frac{(2/3)_n(4/3)_n}{(3/2)_n n!}t^n$, thus
\begin{align*}
\int_{0}^{\zeta''}(\zeta''-t)^{-1/2} {}_2F_1\left(\frac{2}{3},\frac{4}{3};\frac{3}{2};t\right)dt=\sqrt{\pi}\sum_{n\geq 0}\frac{(2/3)_n(4/3)_n}{(3/2)_n \Gamma(3/2+n)}{\zeta''}^{n+\frac{1}{2}}= 2\sqrt{\zeta''}{}_3F_2\left(\frac{2}{3},\frac{4}{3},1;\frac{3}{2},\frac{3}{2};\zeta''\right)\\
\int_{1}^{\zeta'}(\zeta'-t)^{-1/2} {}_2F_1\left(\frac{2}{3},\frac{4}{3};\frac{3}{2};t\right)dt= 2\sqrt{\zeta'}{}_3F_2\left(\frac{2}{3},\frac{4}{3},1;\frac{3}{2},\frac{3}{2};\zeta'\right)-\int_0^1(\zeta'-t)^{-1/2} {}_2F_1\left(\frac{2}{3},\frac{4}{3};\frac{3}{2};t\right)dt
\end{align*}
%Using properties of Caputo's $1/2$-derivative we would like to express $\hat{w}_{\pm}(\zeta)$ as the $1/2$-derivatives of other hypergeometric series. From the integral representation of hypergeomtric functions (see DLMF 15.6.1)
%
%\begin{align*}
%{}_2F_1\left(\frac{7}{6},\frac{11}{6},2,-\frac{3}{4}\zeta\right)&=\frac{3}{5\pi}\int_0^1t^{5/6}(1-t)^{-5/6}(1+\frac{3}{4}\zeta t)^{-7/6}dt & |u|<\frac{4}{3}\\
%&=\frac{3}{5\pi}\zeta^{-1}\int_0^{\zeta}u^{5/6}(\zeta-u)^{-5/6}(1+\frac{3}{4}u)^{-7/6}du &u=\zeta t\\
%&=\frac{3}{5\pi}\int_0^{\zeta}(\zeta-u)^{-1/2}\left(\zeta^{-1/2}(1-\frac{u}{\zeta})^{-1/3}\left(\frac{u}{\zeta}\right)^{5/6}(1+\frac{3}{4}u)^{-7/6}\right)du & \\
%&=\frac{3}{5\sqrt{\pi}}\frac{1}{\Gamma(1/2)}\int_0^{\zeta}(\zeta-u)^{-1/2}\left(\zeta^{-1/2}(1-\frac{u}{\zeta})^{-1/3}\left(\frac{u}{\zeta}\right)^{5/6}(1+\frac{3}{4}u)^{-7/6}\right)du &
%%&=\textcolor{blue}{\frac{3}{5\sqrt{\pi}}\frac{1}{\Gamma(1/2)}\int_0^{\zeta}(\zeta-u)^{-1/2}\frac{1}{f'(f^{-1}(u))} du } & \\
%%&=\textcolor{blue}{\frac{3}{5\sqrt{\pi}}\zeta^{-1}\partial_{\zeta}^{1/2}f^{-1}(\zeta)} &
%\end{align*}
%For formula \eqref{formula1} to hold true we must have
%\begin{equation}\label{claim}
%\frac{3}{5\sqrt{\pi}}\left(\zeta^{-1/2}(1-\frac{u}{\zeta})^{-1/3}\left(\frac{u}{\zeta}\right)^{5/6}(1+\frac{3}{4}u)^{-7/6}\right)= \frac{1}{f'(f^{-1}(u))}
%\end{equation}
%however, $\frac{1}{f'(f^{-1}(u))}$ does not depend on $\zeta$, thus \eqref{claim} is false, and the Airy exponential integral is a counter example of the formula \eqref{formula1}.
%%thus, we would like to see $\int_0^u(\zeta-t)^{-1/3}t^{5/6}(1+\frac{3}{4}t)^{-7/6}dt$ as the product of first derivatives of an hypergeomtric function and un unknown function $g(\zeta)$
%%\begin{align*}
%%\int_0^u(\zeta-t)^{-1/3}t^{5/6}(1+\frac{3}{4}t)^{-7/6}&\textcolor{blue}{=}\int
%%\end{align*}
%
%\subsection{Second temptative formula} Let us assume that the correct formula that replaces \eqref{formula1} in Theorem \ref{thm:maxim} is
%\begin{multline}\label{formula2}
%\hat{I}_{\alpha}(\zeta)=\partial^{N/2}_{\zeta, \text{based at }\zeta_\alpha}\left(\int_{f^{-1}(\zeta_\alpha)}^{f^{-1}(\zeta)}\nu\right)=\Gamma(-N/2)\int_{\zeta_\alpha}^\zeta (\zeta-\zeta')^{-N/2}\int_{f^{-1}(\zeta')}\frac{\nu}{df} d\zeta'
%\end{multline}
%then we compute $\hat{I}$ using properties of the Borel transform of a product:
%
%\begin{align*}
%\hat{I}(\zeta)&=\mathcal{B}(z^{-1/2})\ast\hat{u}(\zeta)\\
%&=\frac{1}{\Gamma(1/2)}\int_0^{\zeta}(\zeta-s)^{-1/2}\hat{u}(s)ds\\
%&=\frac{1}{\Gamma(1/2)}\int_0^\zeta (\zeta-s)^{-1/2}\left(T_{-2/3}\hat{w}_+(s)+T_{2/3}\hat{w}_-(s)\right)ds
%\end{align*}
%
%\begin{align*}
%&=\frac{1}{\Gamma(1/2)}\int_0^\zeta(\zeta-s)^{-1/2} \hat{w}_+(s-2/3)+\frac{1}{\Gamma(1/2)}\int_0^\zeta (\zeta-s)^{-1/2}\hat{w}_-(s+2/3)ds\\
%&=\frac{1}{\Gamma(1/2)}\int_{-2/3}^{\zeta-2/3}(\zeta-\frac{2}{3}-s)^{-1/2} \hat{w}_+(s)+\frac{1}{\Gamma(1/2)}\int_{2/3}^{\zeta+2/3} (\zeta+\frac{2}{3}-s)^{-1/2}\hat{w}_-(s)ds\\
%&=\frac{C_1}{\Gamma(1/2)}\int_{-2/3}^{\zeta-2/3}(\zeta-\frac{2}{3}-s)^{-1/2} {}_2F_1\left(\frac{7}{6},\frac{11}{6},2,-\frac{3}{4}s\right)ds+\frac{C_2}{\Gamma(1/2)}\int_{2/3}^{\zeta+2/3} (\zeta+\frac{2}{3}-s)^{-1/2}{}_2F_1\left(\frac{7}{6},\frac{11}{6},2,\frac{3}{4}s\right)ds\\
%&=\frac{C_3}{\Gamma(1/2)}\int_{-2/3}^{\zeta-2/3}(\zeta-\frac{2}{3}-s)^{-\frac{1}{2}} \frac{\partial}{\partial s}{}_2F_1\left(\frac{1}{6},\frac{5}{6},1,-\frac{3}{4}s\right)ds+\frac{C_4}{\Gamma(1/2)}\int_{2/3}^{\zeta+2/3} (\zeta+\frac{2}{3}-s)^{-\frac{1}{2}}\frac{\partial}{\partial s}{}_2F_1\left(\frac{1}{6},\frac{5}{6},1,\frac{3}{4}s\right)ds\\
%&=\textcolor{red}{C_3\partial^{1/2}_{\zeta, \text{based at } -2/3}{}_2F_1\left(\frac{1}{6},\frac{5}{6},1,-\frac{3}{4}\zeta\right)+C_4\partial^{1/2}_{\zeta, \text{based at } 2/3}{}_2F_1\left(\frac{1}{6},\frac{5}{6},1,\frac{3}{4}\zeta\right)}\, \textcolor{red}{\text{ is wrong!}}
%\end{align*}
%However, ${}_2F_1\left(\frac{1}{6},\frac{5}{6},1,\mp\frac{3}{4}\zeta\right)$ are not algebraic, hence they can not be equal to $\frac{1}{f'(f^{-1}(\zeta))}$ as it is in in Theorem \ref{thm:maxim} part II \eqref{formula2}.
%
%%Notice that $\pm\frac{2}{3}=f(\mp 1)$, i.e. they are the critical value of $f$. Thus, we are left to check that ${}_{1}F_{2}\left(\frac{2}{3},\frac{4}{3},\frac{3}{2},\mp\frac{3}{4}\zeta\right) $ is equal to $1/f'(f^{-1}(\zeta)$. Using Mathamtica we simplify the hypergeometric function
%%
%%\begin{equation}
%%{}_{1}F_{2}\left(\frac{2}{3},\frac{4}{3},\frac{3}{2},-\frac{3}{4}\zeta\right)= \frac{2\sqrt{3}\sinh\left(\frac{2}{3}\mathrm{ArcCsch}\left(\frac{2}{\sqrt{3\zeta}}\right)\right)}{\sqrt{\zeta}\sqrt{4+3\zeta}}
%%\end{equation}
%%
%%then we did the following manipulations: we set $x=\mathrm{ArcCsch}\left(\frac{2}{\sqrt{3\zeta}}\right)$, then
%%
%%\begin{multline}
%%\frac{2\sqrt{3}\sinh\left(\frac{2}{3}\mathrm{ArcCsch}\left(\frac{2}{\sqrt{3\zeta}}\right)\right)}{\sqrt{\zeta}\sqrt{4+3\zeta}}= \frac{3\sinh\left(\frac{2}{3}x\right)}{2\sinh(x)\sqrt{1+\sinh(x)^2}} \\
%%= \frac{3\sinh\left(\frac{2}{3}x\right)}{2\sinh(x)\cosh(x)}=\frac{3\sinh\left(\frac{2}{3}x\right)}{\sinh(2x)}=\frac{3\sinh\left(\frac{2}{3}x\right)}{3\sinh\left(\frac{2}{3}x\right)+4\sinh^3\left(\frac{2}{3}x\right)}\\
%%=\frac{1}{1+\frac{4}{3}\sinh^2\left(\frac{2}{3}x\right)}
%%\end{multline}
%%
%%With respect to the other hypergeometric function, Mathematica gives
%%
%%\begin{equation}
%%{}_{1}F_{2}\left(\frac{2}{3},\frac{4}{3},\frac{3}{2},\frac{3}{4}\zeta\right)= \frac{2\sqrt{3}\sin\left(\frac{2}{3}\mathrm{ArcCsc}\left(\frac{2}{\sqrt{3\zeta}}\right)\right)}{\sqrt{\zeta}\sqrt{4-3\zeta}}
%%\end{equation}
%% now we set $x=\frac{2}{3}\mathrm{ArcCsc}\left(\frac{2}{\sqrt{3\zeta}}\right)$, then
%% \begin{multline}
%% \frac{2\sqrt{3}\sin\left(\frac{2}{3}\mathrm{ArcCsc}\left(\frac{2}{\sqrt{3\zeta}}\right)\right)}{\sqrt{\zeta}\sqrt{4-3\zeta}}=\frac{2\sqrt{3}\sin(x)}{\frac{2}{\sqrt{3}}\sin\left(\frac{3}{2}x\right)\sqrt{4-4\sin^2\left(\frac{3}{2}x\right)}}\\
%% \frac{3\sin(x)}{2\sin\left(\frac{3}{2}x\right)\cos\left(\frac{3}{2}x\right)}=\frac{3\sin(x)}{\sin(3x)}=\frac{3\sin(x)}{3\sin(x)-4\sin^3(x)}\\
%% =\frac{1}{1-\frac{4}{3}\sin^2(x)}
%% \end{multline}
%
%
%%\begin{remark}
%%Notice that the half derivative of a simple pole gives a log singularity; indeed
%%\begin{align*}
%%\frac{1}{1-\frac{4}{3}\sin^2(x)} \text{has simple poles at } \zeta=\frac{4}{3} \text{ and } \zeta=\infty \\
%%\frac{1}{1+\frac{4}{3}\sinh^2(x)} \text{has simple poles at } \zeta=\frac{4}{3} \text{ and } \zeta=\infty \\
%%\end{align*}
%%\end{remark}
%%
%%
%%If $\tilde{I}(z)$ is Borel--Laplace summable, then for a suitable choice of $U_1,U_2$ and of a direction $\theta\in\R/2\pi i\Z$, $\mathcal{S}^{\theta}\tilde{I}(z)=I(z)$. Indeed
%%\begin{align*}
%%I(z)&=\int_{\mathcal{C}} e^{-zf(t)}\text{dt}=\int_{\mathcal{C}_h} e^{-z\zeta}\frac{d\zeta}{f'(f^{-1}(\zeta))}=e^{-2/3z}\int_{T_{2/3}\mathcal{C}_h}e^{-z\zeta}\frac{d\zeta}{f'(f^{-1}(\zeta+2/3))}.
%%\end{align*}
%%
%%However we are interested in resurgence properties of $\tilde{I}(z)$, thus we take its Borel transform.
%\subsubsection{Comparison with Aaron}
%
%The Airy integral can be written in terms of the modified Bessel equation as
%
%\begin{equation}
%Ai(x)=\frac{1}{\pi\sqrt{3}}x^{1/2}K(\frac{2}{3}x^{3/2}).
%\end{equation}
%On the other hand we have, for $z=x^{3/2}$
%\begin{equation}
%Ai(x)=-\frac{z^{1/3}}{2\pi i}I(z)=-\frac{1}{2\pi i}x^{1/2}I(x^{3/2})
%\end{equation}
%hence
%\begin{align*}
%-\frac{1}{2\pi i}I(x^{3/2})&=\frac{1}{\pi\sqrt{3}}K(\frac{2}{3}x^{3/2})\\
%\frac{i}{2} I(z)&=\frac{1}{\sqrt{3}}K(\frac{2}{3}z)
%\end{align*}
%In particular, the Borel trasforms of LHS and RHS\footnote{The conjugate variable of $z$ is $\zeta$, hence $\hat{K}(\frac{2}{3}z)=\frac{3}{2}\hat{K}(\frac{3}{2}\zeta)$. Indeed assuming $K(z)=\sum_{n\geq 0}a_nz^{-n}$, the Borel transform of $K(\frac{2}{3}z)=\sum_{n\geq 0}a_n\left(\frac{3}{2}\right)^nz^{-n}$ is by definition \[\hat{K}(\frac{2}{3}z)=\sum_{k\geq 0}a_{n+1}\left(\frac{3}{2}\right)^{n+1}\frac{\zeta^n}{n!}=\frac{3}{2}\sum_{k\geq 0}\frac{a_{n+1}}{n!}\left(\frac{3}{2}\zeta\right)^{n}=\frac{3}{2}\hat{K}(\frac{3}{2}\zeta). \]} must be equal, i.e.
%\begin{align*}
%\frac{i}{2} \hat{I}(\zeta)&=\frac{\sqrt{3}}{2}\hat{K}(\frac{3}{2}\zeta)\\
%&= \frac{\sqrt{3}}{2}\frac{1}{\sqrt{2}}(\frac{3}{2}\zeta-1)^{-1/2}{}_2F_1\left(\frac{1}{6},\frac{5}{6};\frac{1}{2};\frac{1}{2}-\frac{3}{4}\zeta\right)\\
%&=\frac{\sqrt{3}}{2}(3\zeta-2)^{-1/2}{}_2F_1\left(\frac{1}{6},\frac{5}{6};\frac{1}{2};\frac{1}{2}-\frac{3}{4}\zeta\right)\\
%&=\frac{\sqrt{3}}{2}T_{-2/3}\left((3\zeta)^{-1/2}{}_2F_1\left(\frac{1}{6},\frac{5}{6};\frac{1}{2};-\frac{3}{4}\zeta\right)\right)\\
%&=\frac{1}{2}T_{-2/3}\left(\frac{1}{\sqrt{\zeta}}{}_2F_1\left(\frac{1}{6},\frac{5}{6};\frac{1}{2};-\frac{3}{4}\zeta\right)\right)\\
%\hat{I}(\zeta)&=-i T_{-2/3}\left(\frac{1}{\sqrt{\zeta}}\,\,{}_2F_1\left(\frac{1}{6},\frac{5}{6};\frac{1}{2};-\frac{3}{4}\zeta\right)\right)
%\end{align*}
%%In addition, since $\hat{I}(\zeta)=C_3\partial_{\zeta,\text{based at } -2/3}^{1/2} {}_2F_1\left(\frac{1}{6},\frac{5}{6};\frac{1}{2};-\frac{3}{4}\zeta\right)$ is a solution of the Borel transform of equation \eqref{eq:I}; thus
%%\begin{align*}
%%C_3\partial_{\zeta,\text{based at } -2/3}^{1/2} {}_2F_1\left(\frac{1}{6},\frac{5}{6};\frac{1}{2};-\frac{3}{4}\zeta\right)&=-i T_{-2/3}\left(\frac{1}{\sqrt{\zeta}}\,\,{}_2F_1\left(\frac{1}{6},\frac{5}{6};\frac{1}{2};-\frac{3}{4}\zeta\right)\right)\\
%%C_3\partial_{\zeta}^{1/2} {}_2F_1\left(\frac{1}{6},\frac{5}{6};\frac{1}{2};-\frac{3}{4}\zeta\right)&=-i \frac{1}{\sqrt{\zeta}}\,\,{}_2F_1\left(\frac{1}{6},\frac{5}{6};\frac{1}{2};-\frac{3}{4}\zeta\right)
%%\end{align*}
%
%Equation 5 in Aaron is
%\begin{equation}
%\left[\frac{\partial^2}{\partial z^2}+2\frac{\partial}{\partial z}+\frac{1}{z}\frac{\partial}{\partial z}+\frac{1}{z}-\frac{1}{9z^2}\right]\kappa=0
%\end{equation}
%Its Borel transform is
%\begin{align*}
%&\zeta^2\hat{\kappa}-2\zeta\hat{\kappa}+1\ast(-\zeta\hat{\kappa}+\hat{\kappa})-\frac{1}{9}\zeta\ast\hat{\kappa}=0 \\
%&\zeta^2\hat{\kappa}-2\zeta\hat{\kappa}-\int_{0}^\zeta (s\hat{\kappa}(s)-\hat{\kappa}(s))ds-\frac{1}{9}\int_0^{\zeta}(\zeta-s)\hat{\kappa}(s)ds=0 \\
%&\, \text{ taking derivatives once} \\
%& 2\zeta\hat{\kappa}+\zeta^2\hat{\kappa}'-2\hat{\kappa}-2\zeta\hat{\kappa}'-\zeta\hat{\kappa}+\hat{\kappa}-\frac{1}{9}\int_0^{\zeta}\hat{k}(s)ds=0\\
%& \zeta\hat{\kappa}+\zeta^2\hat{\kappa}'-\hat{\kappa}-2\zeta\hat{\kappa}'-\frac{1}{9}\int_0^{\zeta}\hat{k}(s)ds=0\\
%&\, \text{ taking derivatives once again} \\
%& \hat{\kappa}+\zeta\hat{\kappa}'+2\zeta\hat{k}'+\zeta^2\hat{\kappa}''-\hat{\kappa}'-2\hat{\kappa}'-2\zeta\hat{\kappa}''-\frac{1}{9}\hat{\kappa}=0\\
%&(\zeta^2-2\zeta)\hat{\kappa}''+(3\zeta-3)\hat{k}'+\frac{8}{9}\hat{\kappa}=0
%\end{align*}
%The last equation is a hypergeomtric equation and the fundamental solutions are (see DLMF 15.10.2)
%\begin{equation}
%\hat{\kappa}_1(\zeta)={}_2F_1\left(\frac{2}{3},\frac{4}{3};\frac{3}{2};\frac{\zeta}{2}\right)
%\end{equation}
%\begin{equation}
%\hat{\kappa}_2(\zeta)=\frac{1}{\sqrt{2}}\zeta^{-1/2}{}_2F_1\left(\frac{1}{6},\frac{5}{6};\frac{1}{2};\frac{\zeta}{2}\right)
%\end{equation}
%
%In particular, comparing with $\hat{I}(\zeta)$ we have
%
%\begin{equation}
%\hat{I}\left(\frac{2}{3}\zeta\right)=-i\sqrt{3}\hat{\kappa}_2(\zeta-1)
%\end{equation}
%
%------------------------------------------------------------------------
%
%However, at pag. 5 in Aaron there is a different solution, namely
%\begin{align*}
%\hat{\kappa}(\zeta-1)&=-i\sqrt{2}(\zeta-1)^{-1/2}{}_2F_1\left(\frac{1}{6},\frac{5}{6};\frac{1}{2};\frac{1}{2}-\frac{\zeta}{2}\right)\\
%\hat{\kappa}(\zeta)&=-i\sqrt{2}\zeta^{-1/2}{}_2F_1\left(\frac{1}{6},\frac{5}{6};\frac{1}{2};-\frac{\zeta}{2}\right)=-2i\frac{\cosh\left(\frac{2}{3}\mathrm{arcsinh}\left(\frac{\sqrt{\zeta}}{\sqrt{2}}\right)\right)}{\sqrt{\zeta}\sqrt{2+\zeta}}
%\end{align*}
%------------------------------------------------------------------------
%
%
%As written by Aaron in Section 2.3, the asymptotic behvaior of $\kappa(z)$ is given by
%\begin{equation}
%\kappa(z)\sim \left(\frac{\pi}{2z}\right)^{1/2}\sum_{n\geq 0}a_n(1/3)z^{-n}
%\end{equation}
%where $a_n(1/3)=\frac{(1/6)_n(5/6)_n}{(-2)^nn!}$. Hence the Borel transform of $\kappa(z)$ is
%\begin{align*}
%\hat{\kappa}(\zeta)&=\left(\frac{\pi}{2}\right)^{1/2}\sum_{n\geq 0}a_n(1/3)\frac{\zeta^{n-1/2}}{\Gamma(n+1/2)}\\
%&=\left(\frac{\pi}{2}\right)^{1/2}\sum_{n\geq 0}\frac{(1/6)_n(5/6)_n}{(-2)^nn!}\frac{\zeta^{n-1/2}}{\Gamma(n+1/2)}\\
%&=\frac{1}{\sqrt{2}}\zeta^{-1/2}\sum_{n\geq 0}\frac{(1/6)_n(5/6)_n}{(1/2)_nn!}\left(-\frac{\zeta}{2}\right)^n\\
%&=\frac{1}{\sqrt{2}}\zeta^{-1/2}{}_2F_1\left(\frac{1}{6}\frac{5}{6};\frac{1}{2};-\frac{\zeta}{2}\right)
%\end{align*}
%\begin{align*}
%\hat{\kappa}(\zeta)&=\left(\frac{\pi}{2}\right)^{1/2}\mathcal{B}(z^{-1/2})\ast\left(\delta+\sum_{n\geq 0}a_{n+1}(1/3)\frac{\zeta^n}{n!}\right)=\frac{1}{\sqrt{2}}\zeta^{-1/2}\ast\left(\delta-\frac{5}{72}{}_2F_1\left(\frac{7}{6},\frac{11}{6};2;-\frac{\zeta}{2}\right)\right)\\
%&=\frac{1}{\sqrt{2\zeta}}-\frac{5}{72\sqrt{2}}\int_0^{\zeta}(\zeta-s)^{-1/2}{}_2F_1\left(\frac{7}{6},\frac{11}{6};2;-\frac{s}{2}\right)ds\\
%&=\frac{1}{\sqrt{2\zeta}}+\frac{1}{\sqrt{2}}\int_0^{\zeta}(\zeta-s)^{-1/2}\frac{d}{ds}\left({}_2F_1\left(\frac{1}{6},\frac{5}{6};1;-\frac{s}{2}\right)\right)ds\\
%&\textcolor{red}{=\frac{1}{\sqrt{2}}\partial_\zeta^{1/2}{}_2F_1\left(\frac{1}{6},\frac{5}{6};1;-\frac{\zeta}{2}\right)}\, \textcolor{red}{\text{ is wrong!}}\\
%\end{align*}
%
%\subsubsection{Algebraic Hypergeometric}
%Aaron cliams
%\begin{equation}
%{}_2F_1\left(\frac{1}{3},\frac{2}{3};\frac{1}{2};\zeta^2\right)=\textcolor{red}{-}\frac{1}{4u^2-1}\qquad \text{wtih } \zeta=-4u^3+3u
%\end{equation}
%\begin{proof}
%\begin{align*}
%{}_2F_1\left(\frac{1}{3},\frac{2}{3};\frac{1}{2};\zeta^2\right)&=\cos\left(\frac{1}{3}\arcsin(\zeta)\right)(1-\zeta^2)^{-1/2} & \text{Mathematica [Fullsimplify] } \\
%&=\frac{\cos(y)}{\cos(3y)} & 3y=\arcsin(\zeta)\\
%&=\frac{\cos(y)}{\cos(2y)\cos(y)-\sin(2y)\sin(y)} & \\
%&=\frac{1}{\cos(2y)-2\sin^2(y)} & \\
%&=\frac{1}{1-4\sin^2(y)} & \zeta=3\sin(y)-4\sin^3(y)
%\end{align*}
%Therefore, if $u\defeq\sin(y)$, we have $\zeta=-4u^3+3u$ and \[{}_2F_1\left(\frac{1}{3},\frac{2}{3};\frac{1}{2};\zeta^2\right)=\frac{1}{1-4u^2}=\frac{1}{3}\frac{1}{f'(u)}\]
%\end{proof}
%Now, we notice that
%\begin{align*}
%{}_2F_1\left(\frac{1}{3},\frac{2}{3};\frac{1}{2};\zeta^2\right)&=2 {}_2F_1\left(\frac{2}{3},\frac{4}{3};\frac{3}{2};\frac{1}{2}-\frac{\zeta}{2}\right)+2 {}_2F_1\left(\frac{2}{3},\frac{4}{3};\frac{3}{2};\frac{1}{2}+\frac{\zeta}{2}\right) & 15.8.27 \text{ DLMF} \\
%&=-{}_2F_1\left(\frac{2}{3},\frac{4}{3};\frac{3}{2};\frac{\zeta}{2}\right)-3\sqrt{3}\zeta^{-1/2}{}_2F_1\left(\frac{1}{6},\frac{5}{6};\frac{1}{2};\frac{\zeta}{2}\right)+ & 15.10.17 \text{DLMF}\\
%&\qquad -{}_2F_1\left(\frac{2}{3},\frac{4}{3};\frac{3}{2};-\frac{\zeta}{2}\right)+3\sqrt{3}i\zeta^{-1/2}{}_2F_1\left(\frac{1}{6},\frac{5}{6};\frac{1}{2};-\frac{\zeta}{2}\right) & 15.10.17 \text{DLMF}\\
%&=-\hat{\kappa}_1(\zeta)-3\sqrt{6}\hat{\kappa}_2(\zeta)-\hat{\kappa}_1(-\zeta)+3\sqrt{6}\hat{\kappa}_2(-\zeta) \\
%&=-(\hat{\kappa}_1(\zeta)+\hat{\kappa}_1(-\zeta))-3\sqrt{6}
%\end{align*}
\end{example}
\end{document}