-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHigher_Airy.tex
239 lines (190 loc) · 13.5 KB
/
Higher_Airy.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
\documentclass{article}
\usepackage{url}
\usepackage[hmargin=1.5in]{geometry}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage[svgnames]{xcolor}
\usepackage{tikz-cd}
% convenience aliases
\newcommand{\maps}{\colon}
% symbology
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\series}[1]{\tilde{#1}}
\newcommand{\fracderiv}[3]{\partial^{#1}_{#2, #3}}
\newcommand{\holoL}[1]{\mathcal{H}L^{#1}} %% may no longer be needed
\newcommand{\blankbox}{{\fboxsep 0pt \colorbox{lightgray}{\phantom{$h$}}}}
\newcommand{\laplacepde}{\mathcal{D}}
\newcommand{\van}{\mathfrak{m}}
\DeclareMathOperator{\Ai}{Ai}
\usetikzlibrary{matrix,shapes,arrows,decorations.pathmorphing}
\tikzset{commutative diagrams/arrow style=math font}
\tikzset{commutative diagrams/.cd,
mysymbol/.style={start anchor=center,end anchor=center,draw=none}}
\newcommand\MySymb[2][\square]{%
\arrow[mysymbol]{#2}[description]{#1}}
\tikzset{
shift up/.style={
to path={([yshift=#1]\tikztostart.east) -- ([yshift=#1]\tikztotarget.west) \tikztonodes}
}
}
\DeclareMathAlphabet{\mathpzc}{OT1}{pzc}{m}{it}
\newcommand*{\defeq}{\mathrel{\vcenter{\baselineskip0.5ex \lineskiplimit0pt
\hbox{\scriptsize.}\hbox{\scriptsize.}}}%
=}
\newcommand*{\defeqin}{\mathrel{\vcenter{\lineskiplimit0pt\baselineskip0.5ex
\hbox{\scriptsize.}\hbox{\scriptsize.}}}%
=}
%%\let\Re\relax
%%\DeclareMathOperator{\Re}{Re}
\newcommand{\laplace}{\mathcal{L}}
\newcommand{\borel}{\mathcal{B}}
\newcommand{\aexp}{\text{\ae}}
\newcommand{\deriv}[3]{\partial^{#1}_{#2 \text{ from } #3}}
\newtheorem{definition}{Definition}[section]
\newtheorem{prop}[definition]{Proposition}
\newtheorem{remark}[definition]{Remark}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{lemma}[definition]{Lemma}
%\newtheorem{conjecture}[definition]{Conjecture}
\newtheorem{claim}[definition]{Claim}
%\newtheorem{exercise}[definition]{Exercise}
%\newtheorem*{notation*}{Notation}
% drafting environments
\newenvironment{verify}{\color{ForestGreen}}{\color{black}}
\newenvironment{brainstorm}{\color{violet}\begin{itemize}}{\end{itemize}\color{black}}
% colors
\definecolor{ietocean}{RGB}{0, 30, 140}
\definecolor{ietcoast}{RGB}{0, 150, 173}
\definecolor{ietlagoon}{RGB}{0, 216, 180}
% pretty prince hyperref must always be the last thing in the preamble, always
\usepackage{hyperref}
\hypersetup{
colorlinks,
linkcolor={ietcoast},
citecolor={ietcoast},
urlcolor={ietcoast}
}
\title{Higher Airy}
\author{Veronica Fantini}
\begin{document}
\maketitle
\textcolor{magenta}{[The higher Airy example is not completed and there are still some difficulties in the computations, even for simple examples. Should we remove it?]}
The higher Airy equation is
\begin{equation}\label{eqn:higher-airy}
\left[\big({-}\tfrac{\partial}{\partial y}\big)^{n-1} - y\right] \psi = 0
\end{equation}
with $n \in \{3, 4, 5, \ldots\}$. A few solutions are given by the hyper-Airy functions~\cite[Equation~3.8]{charbonnier22},
\color{Peru}
With
\begin{align*}
z & = (-1)^{n-1} \tfrac{n-1}{n} y^{n/(n-1)} & w & = (-1)^n (n-1) y^{1/(n-1)} u,
\end{align*}
we have
\begin{align*}
\widetilde{\Ai}^{(k)}_n(y) & = \frac{\exp\big(\pi ik \tfrac{n-2}{n-1}\big)}{2\pi i} \int_{\Lambda^{(j)}} \exp\left[\tfrac{1}{n}w^n - yw\right]\,dw \\
& = \frac{\exp\big(\pi ik \tfrac{n-2}{n-1}\big)}{2\pi i} \int_{\Lambda^{(j)}} \exp\left[\tfrac{1}{n}w \left(w^{n-1} - ny\right)\right]\,dw \\
& = \frac{\exp\big(\pi ik \tfrac{n-2}{n-1}\big)}{2\pi i} \int_{\Lambda^{(j)}} \exp\left[\tfrac{1}{n}w \big((n-1)^{n-1} yu^{n-1} - ny\big)\right]\,dw \\
& = \frac{\exp\big(\pi ik \tfrac{n-2}{n-1}\big)}{2\pi i} \int_{\Lambda^{(j)}} \exp\left[\tfrac{1}{n}yw \big((n-1)^{n-1} u^{n-1} - n\big)\right]\,dw \\
& = \frac{\exp\big(\pi ik \tfrac{n-2}{n-1}\big)}{2\pi i} \int_{\Lambda^{(j)}} \exp\left[(-1)^n \tfrac{n-1}{n} y^{n/(n-1)} u\big((n-1)^{n-1} u^{n-1} - n\big)\right]\,dw \\
& = \frac{\exp\big(\pi ik \tfrac{n-2}{n-1}\big)}{2\pi i} \int_{\Lambda^{(j)}} \exp\left[-z\big((n-1)^{n-1} u^n - nu\big)\right]\,dw \\
& = (-1)^n (n-1) \frac{\exp\big(\pi ik \tfrac{n-2}{n-1}\big)}{2\pi i} y^{1/(n-1)}\int_{\Lambda^{(j)}} \exp\left[-z\big((n-1)^{n-1} u^n - nu\big)\right]\,du \\
& = (-1)^n (n-1) \frac{\exp\left(\pi ik \big(1 - \tfrac{1}{n-1}\big)\right)}{2\pi i} y^{1/(n-1)}\int_{\Lambda^{(j)}} \exp\left[-z\big((n-1)^{n-1} u^n - nu\big)\right]\,du \\
& = (-1)^{n+k} (n-1) \frac{\exp\big({-}\pi i \tfrac{k}{n-1}\big)}{2\pi i} y^{1/(n-1)}\int_{\Lambda^{(j)}} \exp\left[-z\big((n-1)^{n-1} u^n - nu\big)\right]\,du \\
\end{align*}
\color{black}
\[ \widetilde{\Ai}^{(k)}_n(y) = (-1)^{n+k} (n-1) \frac{\exp\big({-}\pi i \tfrac{k}{n-1}\big)}{2\pi i} y^{1/(n-1)}\int_{\Lambda^{(j)}} \exp\left[-z\big((n-1)^{n-1} u^n - nu\big)\right]\,du \\, \]
where $\Lambda^{(k)}$ is the Lefschetz thimble through $u = \cos\big(\tfrac{k}{n}\pi\big)$.
\subsubsection{Rewriting as a \textcolor{magenta}{(???)} equation}
We can distill the most interesting parts of the hyper-Airy function by writing
\[ \widetilde{\Ai}^{(k)}_n(y) = \textcolor{magenta}{\text{const.}}\,y^{1/(n-1)}\,K^{(k)}\left((-1)^n\,\tfrac{n-1}{n}\,y^{n/(n-1)}\right), \]
where
\begin{equation}\label{int_higher-Ariy}
K^{(k)}(z) = \textcolor{magenta}{\text{const.}} \int_{\textcolor{magenta}{\text{const.}(n)} z^{-\textcolor{DarkCyan}{1/n}}\Lambda^{(k)}} \exp\left[-z\big((n-1)^{n-1} u^n - nu\big)\right]\,du.
\end{equation}
Saying that $\widetilde{\Ai}^{(k)}_n$ satisfies the higher Airy equation is equivalent to saying that $K$ satisfies an equation of the form
\begin{equation}\label{eqn:higher-Airy}
\left[ \big[ \big({-}\tfrac{\partial}{\partial z}\big)^{n-1} - 1 \big] - c_n^{(1)} z^{-1} \big({-}\tfrac{\partial}{\partial z}\big)^{n-2} - c_n^{(2)} z^{-2} \big({-}\tfrac{\partial}{\partial z}\big)^{n-3} - \ldots - c_n^{(n-1)} z^{-(n-1)} \right] K^{(k)} = 0.
\end{equation}
The sub-leading coefficients are
\[ c_n^{(1)} = \frac{n-1}{2}. \]
The later coefficients can be written as\footnote{Many thanks to Peter Taylor for noticing this [\url{https://mathoverflow.net/q/422337/1096}].}
\[ c_n^{(k)} = \frac{b_n^{(k)}}{n^k}\,\frac{\Gamma(n+2)}{\Gamma(n-k)} \]
in terms of the polynomials
\begin{tabular}{llllllllllll}
$b_n^{(2)}$ & = & $\frac{1}{24}$ \\
$b_n^{(3)}$ & = & $\frac{1}{48} n$ \\
$b_n^{(4)}$ & = & $\frac{73}{5760} n^2$ & + & $\frac{1}{1152} n$ & - & $\frac{1}{2880}$ \\
$b_n^{(5)}$ & = & $\frac{11}{1280} n^{3}$ & + & $\frac{1}{768} n^{2}$ & - & $\frac{1}{1920} n$ \\
$b_n^{(6)}$ & = & $\frac{3625}{580608} n^{4}$ & + & $\frac{61}{41472} n^{3}$ & - & $\frac{181}{322560} n^{2}$ & - & $\frac{1}{41472} n$ & + & $\frac{1}{181440}$.
\end{tabular}
\vspace{5mm}
Searching for 580608 in the OEIS turns up the leading coefficients $\beta^{(k)}$ of these polynomials, which are listed as {\tt A249276} and {\tt A249277}. They're defined by the identity [Yang, ``Approximations for Constant $e$ and Their Applications'']
\[ \frac{1}{e} \left(\frac{n}{n-1}\right)^{n-1} = 1 - \frac{1/2}{n} - \frac{\beta^{(2)}}{n^2} - \frac{\beta^{(3)}}{n^3} - \frac{\beta^{(4)}}{n^4} - \frac{\beta^{(5)}}{n^5} - \ldots, \]
which tells us that
\[ \frac{1}{e} \left(\frac{n}{n-1}\right)^{n-1} = 1 - \frac{1/2}{n} - \frac{b_n^{(2)}}{n^2} - \frac{b_n^{(3)}}{n^4} - \left[\frac{b_n^{(4)}}{n^6} + o\left(\frac{1}{n^5}\right)\right] - \left[\frac{b_n^{(5)}}{n^8} + o\left(\frac{1}{n^6}\right)\right] - \ldots. \]
The last coefficient can be written as
\[ c_n^{(n-1)} =\left(\frac{n-1}{n}\right)^{n-1} \left(\frac{1}{n-1}\right)^{\underline{n-1}},
\]
giving
\[ b_n^{(n-1)} = (n-1)^{n-1} \left(\frac{1}{n-1}\right)^{\underline{n-1}} \Big/ \Gamma(n+2). \]
\subsubsection{Building a frame of analytic solutions}
We're going to look for functions $v_\alpha$ whose Laplace transforms $\laplace_{\zeta, \alpha} v_\alpha$ satisfy equation~\eqref{eqn:higher-Airy}. We'll succeed when $\alpha^{n-1} - 1 = 0$, and we'll see that $K^{(k)}$ is a scalar multiple of $\laplace_{\zeta, \alpha_k} v_k$ with $\alpha_k=e^{2\pi i \tfrac{k}{n-1}}$.
We can see from Section~\ref{L-int-op} that $\laplace_{\zeta, \alpha_k} v$ satisfies the differential equation~\eqref{eqn:higher-Airy} if and only if $v$ satisfies the integral equation
\begin{equation}\label{int-eq:spatial-higher-Airy}
\left[ \big[ \zeta^{n-1} - 1 \big] - c_n^{(1)} \partial_{\zeta,\alpha_k}^{-1}\circ \zeta^{n-2} - c_n^{(2)} \partial_{\zeta,\alpha_k}^{-2} \circ\zeta^{n-3} - \ldots - c_n^{(n-1)} \partial_{\zeta,\alpha_k}^{-(n-1)} \right] v = 0.
\end{equation}
Since equation \eqref{eqn:higher-Airy} is written in form \eqref{eqn:standard ODE} and the coefficient $c_n^{(1)}$ is explicitly known, we deduce that equation \eqref{int-eq:spatial-higher-Airy} admits a slight solution at $\zeta={\alpha_k} $ of order $\tau_{\alpha_k}=\frac{1}{2}$. In particular, $v$ is a solution of \eqref{int-eq:spatial-higher-Airy} if and only if it solves the following differential equation
\begin{equation}\label{diff-eq:spatial-higher-Airy}
\left[ \big(\tfrac{\partial}{\partial \zeta}\big)^{n-1} \circ\big[ \zeta^{n-1} - 1 \big] - c_n^{(1)} \big(\tfrac{\partial}{\partial \zeta}\big)^{n-2}\circ \zeta^{n-2} - c_n^{(2)} \big(\tfrac{\partial}{\partial \zeta}\big)^{n-3} \circ\zeta^{n-3} - \ldots - c_n^{(n-1)} \right] v = 0.
\end{equation}
Using the Liebniz rule for the differential, we get
\color{Peru}
\begin{align*}
\big(\tfrac{\partial}{\partial \zeta}\big)^{n-1} \circ\big[ \zeta^{n-1} - 1 \big]v&=\sum_{j=0}^{n-1} \binom{n-1}{j} v^{(n-j-1)}\big(\tfrac{\partial}{\partial \zeta}\big)^{j} \big[ \zeta^{n-1} - 1 \big]\\
&=(\zeta^{n-1} - 1)\partial_{\zeta}^{n-1}v+ (n-1)^2\zeta^{n-2} \partial_\zeta^{n-2}v +\\
&\qquad \sum_{j=2}^{n-1} \binom{n-2}{j} v^{(n-j-1)}\big(\tfrac{\partial}{\partial \zeta}\big)^{j} \big[ \zeta^{n-1} - 1 \big]+(n-1)! v\\
\big(\tfrac{\partial}{\partial {\zeta}}\big)^{n-2}\circ \zeta^{n-2}v&=\zeta^{n-2}\partial_\zeta^{n-2}v+\sum_{j=1}^{n-3} \binom{n-2}{j} v^{(n-j-2)}\big(\tfrac{\partial}{\partial \zeta}\big)^{j} \big[ \zeta^{n-1} - 1 \big]+(n-2)!v \\
\big(\tfrac{\partial}{\partial \zeta}\big)^{n-3} \circ\zeta^{n-3}v&=\sum_{j=0}^{n-4} \binom{n-3}{j} v^{(n-j-3)}\big(\tfrac{\partial}{\partial \zeta}\big)^{j} \big[ \zeta^{n-1} - 1 \big]+(n-3)!v\\
\tfrac{\partial}{\partial \zeta} \circ\zeta v&=\zeta \partial_\zeta v+v
\end{align*}
\color{black}
\begin{equation}\label{diff-eq:spatial-mod-higher-Airy}
\left[ (\zeta^{n-1} - 1)\partial_{\zeta}^{n-1}+ \big[(n-1)^2-c_n^{(1)}\big]\zeta^{n-2} \partial_\zeta^{n-2}+...+\big[(n-1)!-c_n^{(1)}(n-2)!-...-c_n^{(n-1)}\big] \right] v = 0.
\end{equation}
Let's find a solution of equation~\eqref{diff-eq:spatial-mod-higher-Airy} which is slight and locally integrable at $\zeta = 1$. Define a new coordinate $\zeta_1$ on $\C$ so that $\zeta = 1 + \zeta_1$. In this coordinate, equation~\eqref{diff-eq:spatial-mod-higher-Airy} looks like
\begin{multline}\label{diff-eq:spatial-mod-higher-Airy-1}
\left[\zeta_1(n-1+...+(n-1)\zeta_1^{n-3} + \zeta_1^{n-2}) \big(\tfrac{\partial}{\partial \zeta_1}\big)^{n-1} + \big[(n-1)^2-c_n^{(1)}\big](1+\zeta_1)^{n-2} \tfrac{\partial}{\partial \zeta_1}^{n-2} + ... \right.\\
\left. +\big[(n-1)!-c_n^{(1)}(n-2)!-...-c_n^{(n-1)}\big]\right] v = 0.
\end{multline}
\subsubsection{Higher Airy of degree $3$}
Setting $n=4$, equation \eqref{eqn:higher-Airy} turns into
\begin{equation}\label{eqn:reg-higher3}
\left[\frac{\partial^3}{\partial z^3}+1+\frac{3}{2z}\frac{\partial^2}{\partial z^2}-\frac{5}{16}\frac{1}{z^2}\frac{\partial}{\partial z}+\frac{5}{32}\frac{1}{z^3}\right]\varphi=0
\end{equation}
and going to the spatial domain, $\laplace_{\zeta,\alpha_k}$ satisfies equation~\eqref{eqn:reg-higher3} if and only if $v$ satisfies
\begin{equation}\label{diff-eq:spatial-higher3}
\left[(\zeta^3-1)\partial_\zeta^3-\frac{15}{2}\zeta^2\partial_\zeta^2-\frac{187}{16}\zeta\partial_\zeta+\frac{81}{32}\right]\varphi=0
\end{equation}
Let's find a solution of equation~\eqref{diff-eq:spatial-higher3} which is slight and locally integrable at $\zeta = 1$. Define a new coordinate $\zeta_1$ on $\C$ so that $\zeta = 1 + \zeta_1$. In this coordinate, equation~\eqref{diff-eq:spatial-higher3} looks like
\begin{equation}%%\label{diff-eq:spatial-mod-bessel-pos}
\left[\zeta_1(3 + 3\zeta_1 + \zeta_1^2) \big(\tfrac{\partial}{\partial \zeta_1}\big)^3 - \frac{15}{2}(1 + 2\zeta_1 + \zeta_1^2) \big(\tfrac{\partial}{\partial \zeta_1}\big)^2 -\frac{187}{16}(1+\zeta_1)\tfrac{\partial}{\partial \zeta_1} + \frac{81}{32}\right] v = 0.
\end{equation}
\textcolor{DarkBlue}{[Find solutions using hypergeometric functions]}
\subsubsection{thimble projection reasoning for higher Airy of degree $3$}
We can recast integral \eqref{int_higher-Ariy} into the $\zeta$-plane by setting $\zeta=27 u^4-4 u$, which implies that $d\zeta=4 (27 u^3-1) du$. Projecting $z^{-1/4}\Lambda^{(k)}$ to a contour $\gamma_z$ in the $\zeta$ plane and choosing a branch of that lifts $\gamma_z$ back to $z^{-1/4}\Lambda^{(k)}$, we get
\begin{align*}
K^{(k)}(z)&=\textcolor{magenta}{const.} \int_{\textcolor{magenta}{const.}z^{-1/4}\Lambda^{(k)}}\exp\big[- z \big(27 u^4-4 u\big)\big] du\\
&=\textcolor{magenta}{const.} \int_{\gamma_z}e^{-z\zeta} \frac{d\zeta}{4(27u^3-1)}\\
&=\textcolor{magenta}{const.} \frac{1}{4}\int_{\gamma_z}e^{-z\zeta}\frac{1}{3}\left[\frac{1}{3u-1}+\frac{1}{3e^{\frac{2\pi i}{3}} u -1}+\frac{1}{3e^{\frac{4\pi i}{3}} u-1}\right] d\zeta\\
&=-\textcolor{magenta}{const.} \frac{1}{4}\int_{\gamma_z}e^{-z\zeta} {}_3F_2\left(\frac{1}{3},\frac{2}{3},1;\frac{1}{3},\frac{2}{3};27 u^3\right) d\zeta
\end{align*}
\[
\frac{1}{4}\frac{1}{27u^3-1}=\frac{1}{4}(\frac{A}{3u-1}+\frac{B}{3u-\omega}+\frac{C}{3u-\omega^2})
\]
\bibliographystyle{utphys}
\bibliography{airy-resurgence}
\end{document}