-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGeneralized Airy.tex
305 lines (228 loc) · 18.2 KB
/
Generalized Airy.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
\documentclass{article}
\usepackage{url}
\usepackage[hmargin=1.5in]{geometry}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{xcolor}
% convenience aliases
\newcommand{\maps}{\colon}
% symbology
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\laplace}{\mathcal{L}}
\include{command2}
\title{Resurgence of modified Bessel functions of second kind}
\author{Veronica Fantini}
\begin{document}
\maketitle
\section{Generalized Airy}
In \cite{Reid} \cite{Drazin-Reid} the authors introduce generalized Airy functions $A_k(z), B_0(z), B_k(z)$, $k=1,2,3$ as approximate solutions of the Orr--Sommerfield fluid equation. They are defined as countour integral (\cite{DLMF} \S 9.13(ii))
\begin{align*}
\mathrm{A}_k(z,p)&=\frac{1}{2\pi i}\int_{\Gamma_k}e^{zt-\tfrac{t^3}{3}}\frac{dt}{t^p} \qquad k=1,2,3\,\, p\in\C \\
\mathrm{B}_0(z,p)&=\frac{1}{2\pi i}\int_{\Gamma_0}e^{zt-\tfrac{t^3}{3}}\frac{dt}{t^p} \qquad p\in\Z \\
\mathrm{B}_k(z,p)&=\int_{\gamma_k}e^{zt-\tfrac{t^3}{3}}\frac{dt}{t^p} \qquad k=1,2,3\,\, p\in\Z
\end{align*}
where the countours $\Gamma_k, \Gamma_0, \gamma_k$ are represented in Figure \ref{fig.countours}
\begin{figure}
%\includegraphics[scale=0.5]{countours}
\end{figure}
Each generalize Airy functions is a solution of
\begin{equation}
\left[\partial_z^3-z\partial_z+(p-1)\right]f(z,p)=0
\end{equation}
and if $p=0$ they reduced to the classical Airy functions: $\mathrm{Ai}(z)=\mathrm{A}_1(z,0)$ and $\mathrm{Bi}(z)=\mathrm{B}_1(z,0)$.
We define the following exponential integral: let $p\geq 0$, $f(t)=\tfrac{t^3}{3}-t$ and $\nu_p=\tfrac{dt}{t^p}$. The critical points of $f$ are $\pm\tfrac{2}{3}$ (as for the classical Airy case), however the volume form $\nu_p$ is meromorphic
\begin{equation}
I_\alpha(z,p)\defeq\frac{1}{2\pi i}\int_{\mathcal{C}_{\alpha}}e^{-z(\tfrac{t^3}{3}-t)}\frac{dt}{t^p}
\end{equation}
where $\mathcal{C}_\alpha$ is the path through the point $\alpha$, starting and ending at infinity (as in Figure \ref{fig:path for I}). In particular, $I_{+}(z,p)=z^{\tfrac{p-1}{3}}\mathrm{A}_1(z^{2/3},p)$:
\begin{align*}
I_{+}(z,p)&=\frac{1}{2\pi i}\int_{\mathcal{C}_{+}}e^{-z(\tfrac{t^3}{3}-t)}\frac{dt}{t^p} &\\
&=\frac{z^{(p-1)/2}}{2\pi i}\int_{z^{-1/3}\mathcal{C}_{+}}e^{-z(z^{-1}\tfrac{s^3}{3}-z^{-1/3}s)}\frac{ds}{s^p} & t=z^{-\tfrac{1}{3}}s\\
&=\frac{z^{(p-1)/3}}{2\pi i}\int_{z^{-1/3}\mathcal{C}_{+}}e^{-\left(\tfrac{s^3}{3}-z^{2/3}s\right)}\frac{ds}{s^p} & \\
&=z^{(p-1)/3}\mathrm{A}_1(z^{2/3},p)
\end{align*}
It follows that $I_+(z)$ is a solution of
\begin{equation}\label{eq:I}
\left[\partial_z^3-\frac{4}{9}\partial_z+\frac{2-p}{z}\partial_z^2-\frac{4(1-p)}{9z}-\frac{1+3p-3p^2}{9}\frac{\partial_z}{z^2}+\frac{3+p-3p^2-p^3}{27z^3}\right]I_+(z,p)=0
\end{equation}
From the general theory of linear ODE, the formal integral solution of \eqref{eq:I} is a linear combinations of three generators
%\begin{equation}
%\tilde{I}_+(z,p)=\sum_{\mathbf{k}\in\N^3}U^\mathbf{k}e^{-\tfrac{2}{3}(k_2-k_3)z}z^{-\tfrac{1}{2}(k_2+k_3)-(1-p)k_1}\tilde{W}_{\mathbf{k}}(z)
%\end{equation}
%
%where $\tilde{W}_\mathbf{k}(z)\in\C[\![z^{-1}]\!]$ is a formal solution of
%\begin{equation}
%\left[P_3(\partial,\mathbf{k})+\frac{1}{t}P_2(\partial,\mathbf{k})+\frac{1}{t^2}P_1(\partial,\mathbf{k})+\frac{1}{t^3}P_0(\partial,\mathbf{k})\right]\tilde{W}_{\mathbf{k}}(z)=0
%\end{equation}
%
%\begin{align*}
%P_0(\partial,\mathbf{k})&=\frac{1}{9}+\frac{1}{9}k_1-k_1^2-k_1^3+\frac{1}{18}k_2 -k_1k_2-\frac{3}{2}k_1^2k_2-\frac{1}{4}k_2^2-\frac{3}{4}k_1k_2^2-\frac{1}{8}k_2^3+\frac{p^3}{3}k_1+\\
%&\,\,+\frac{1}{18}k_3-k_1k_3-\frac{3}{2}k_1^2 k_3-\frac{1}{2}k_2k_3-\frac{3}{2}k_1k_2k_3-\frac{3}{8}k_2^2k_3-\frac{1}{4}k_3^2-k_1^2 p^3+k_1^3 p^3+\\
%&\,\,-\frac{3}{4}k_1k_3^2-\frac{3}{8}k_2k_3^2-\frac{1}{8}k_3^3+\frac{p}{27}-\frac{7}{9}k_1 p+k_1^2 p+3k_1^3 p-\frac{p}{3}k_2+3 k_1^2k_2 p-\frac{p}{4}k_2^2+\\
%&\,\,\frac{3}{4}k_1k_2^2 p-\frac{p}{3}k_3+3 k_1^2k_3 p-\frac{p}{2}k_2k_3+\frac{3}{2}k_1k_2k_3p-\frac{p}{4}k_3^2+\frac{3}{4}k_1k_3^2 p-\frac{p^2}{9}+\frac{p^2}{3}k_1+\\
%&\,\,+k_1^2 p^2 -3k_1^3 p^2-\frac{p^2}{6}k_2+k_1k_2 p^2-\frac{3}{2}k_1^2k_2 p^2-\frac{p^2}{6}k_3+k_1k_3 p^2-\frac{3}{2}k_1^2k_3 p^2-\frac{p^3}{27}\\
%P_1(\partial,\mathbf{k})&=(-\frac{1}{9}-k_1+3k_1^2-\frac{1}{2}k_2+3k_1 k_2+\frac{3}{4}k_2^2-\frac{1}{2}k_3+3k_1k_3+\frac{3}{2}k_2k_3+\frac{3}{4}k_3^2-\frac{p}{3}+\\
%&\,\,+3 k_1p-6k_1^2 p+k_2 p -3 k_1k_2 p+k_3 p-3 k_1k_3 p+\frac{p^2}{3}-2k_1 p^2 +3k_1^2p^2 )\partial_z +\\
%&\,\,+\frac{2}{27}k_2 +\frac{2}{3}k_1k_2-2k_1^2k_2+\frac{1}{3}k_2^2-2 k_1k_2^2-\frac{1}{2}k_2^3-\frac{2}{27}k_3-\frac{2}{3}k_1k_3+\\
%&\,\,+2k_1^2k_3-\frac{1}{2}k_2^2k_3-\frac{1}{3}k_3^2+2k_1k_3^2+\frac{1}{2}k_2k_3^2+\frac{1}{2}k_3^3+\frac{2}{9}k_2 p-2k_1k_2 p\\
%&\,\,+4 k_1^2k_2 p-\frac{2}{3}k_2^2 p+2k_1k_2^2 p-\frac{2}{9}k_3 p+2 k_1k_3 p-4k_1^2k_3 p+\frac{2}{3}k_3^2 p-2k_1k_3^2 p-\frac{2}{9}k_2 p^2+\\
%&\,\,+\frac{4}{3}k_1k_2p^2-2k_1^2k_2p^2+\frac{2}{9}k_3p^2-\frac{4}{3}k_1k_3p^2+2k_1^2k_3p^2\\
%P_2(\partial,\mathbf{k})&=(2-3k_1-\frac{3}{2}(k_2+k_3)-p+3k_1p)\partial^2_z +\\
%&\,\, (-\frac{8}{3} k_2+ 4k_1k_2 +2k_2^2 +\frac{8}{3}k_3-4k_1k_3-2k_3^2+\frac{4}{3}k_2 p-4k_1k_2 p-\frac{4}{3}k_3 p+4k_1k_3 p) \partial_z +\\
%&\,\,-\frac{4}{9}+\frac{4}{9} k_1+\frac{2}{9} k2 +\frac{8}{9}k_2^2 -\frac{4}{3}k_1 k_2^2-\frac{2}{3}k_2^3+\frac{2}{9} k_3-\frac{16}{9} k_2 k_3+\frac{8}{3}k_1k_2 k_3+\frac{2}{3}k_2^2+\frac{8}{9}k_3^2-\frac{4}{3}k_1k_3^2+\\
%&\,\,+\frac{2}{3}k_2k_3^2-\frac{2}{3}k_3^3+\frac{4}{9}p-\frac{4}{9}k_1p-\frac{4}{9}k_2^2 p+\frac{4}{3} k_1 k_2^2 p +\frac{8}{9}k_2k_3 p-\frac{8}{3} k_1 k_2 k_3p-\frac{4}{9}k_3^2 p+\frac{4}{3}k_1 k_3^2 p \\
%P_3(\partial,\mathbf{k})&=\partial_z^3-2(k_2-k_3)\partial_z^2+\frac{4}{3}(k_2-k_3)^2\partial_z-\frac{4}{9}\partial_z+\frac{8}{27}(k_2-k_3)(1-k_2+k_3)(1+k_2-k_3)
%\end{align*}
%
%
%
%Since $\tilde{W}_{\mathbf{k}}(z)=\sum_{j\geq 0}a_{\mathbf{k},j}z^{-j}$ there only few values of $\mathbf{k}\in\N^3$ such that $\tilde{W}_{\mathbf{k}}\neq 0$, hence the formal integral solution of \eqref{eq:I} reduces to
\begin{equation}
\tilde{I}_+(z,p)=U_1z^{p-1}\tilde{W}_1(z)+U_2e^{-\tfrac{2}{3}z}z^{-1/2}\tilde{W}_2(z)+U_3e^{\tfrac{2}{3}z}z^{-1/2}\tilde{W}_3(z)
\end{equation}
where $\tilde{W}_1, \tilde{W}_2$ and $\tilde{W}_3$ are formal power seirs $\tilde{W}_{\mathbf{k}}(z)=\sum_{j\geq 0}a_{\mathbf{k},j}z^{-j}$, which are the unique (we fix $a_{k,0}=1$ for $k=1,2,3$) solution of
\begin{multline}\label{w1}
\left[\partial_z^3-\frac{4}{9}\partial_z-\frac{1-2p}{z}\partial_z^2+\frac{17-30p+12p^2}{9z^2}\partial_z+\frac{8}{27}\frac{p^3-6p^2+11p-6}{z^3}\right]\tilde{W}_1(z)=0
\end{multline}
\begin{multline}\label{w2}
\left[\partial_z^3-2\partial_z^2+\frac{8}{9}\partial_z+\frac{1-2p}{2z}\partial_z^2-\frac{2-4p}{3z}\partial_z+\frac{5+24p+12p^2}{36z^2}\partial_z+\right.\\
\left.-\frac{5+24p+12p^2}{54z^2}-\frac{1}{z^3}\left(\frac{5}{24}+\frac{59}{108}p+\frac{5}{18}p^2+\frac{1}{27}p^3\right)\right]\tilde{W}_2(z)=0
\end{multline}
\begin{multline}\label{w3}
\left[\partial_z^3+2\partial_z^2+\frac{8}{9}\partial_z+\frac{1-2p}{2z}\partial_z^2+\frac{2-4p}{3z}\partial_z+\frac{5+24p+12p^2}{36z^2}\partial_z+\right.\\
\left.+\frac{5+24p+12p^2}{54z^2}-\frac{1}{z^3}\left(\frac{5}{24}+\frac{59}{108}p+\frac{5}{18}p^2+\frac{1}{27}p^3\right)\right]\tilde{W}_3(z)=0
\end{multline}
Let us first study equation \eqref{w1}: its Borel transform is
\begin{multline*}
-\zeta^3\tilde{w}_1+\frac{4}{9}\zeta\tilde{w}_1-(1-2p)\int_0^\zeta\tilde{w}_1(t)t^2dt+\frac{(17-30p+12p^2)}{9}\int_0^\zeta(-t\tilde{w}_1(t))(\zeta-t)dt+\\
+\frac{8}{27}(p^3-6p^2+11p-6)\int_0^\zeta\tilde{w}_1(t)\frac{(\zeta-t)^2}{2}dt=0
\end{multline*}
We differentiate three times, getting
\begin{multline*}
\left(\frac{4}{9}\zeta-\zeta^3\right)\tilde{w}_1^{(3)}(\zeta)+\left(\frac{4}{3}-2(5-p)\zeta^2\right)\tilde{w}_1''(\zeta)-\left(\frac{215}{9}-\frac{34}{3}p+\frac{4}{3}p^2\right)\tilde{w}_1'(\zeta)+\\
+\frac{8}{27}\left(p-\frac{9}{2}\right)\left(p-\frac{7}{2}\right)\left(p-\frac{5}{2}\right)\tilde{w}_1(\zeta)=0
\end{multline*}
we set $y=\tfrac{9}{4}\zeta^2$
%\begin{multline}
%\left[-4y(y-1)(2y\partial_y^3+3\partial_y^2)+3(4y\partial_y^2+2\partial_y)-2(5-p)y(4y\partial_y^2+2\partial_y)+\right.\\
%\left.-2y\left(\frac{215}{9}-\frac{34}{3}p+\frac{4}{3}p^2\right)\partial_y+\frac{8}{27}\left(p-\frac{9}{2}\right)\left(p-\frac{7}{2}\right)\left(p-\frac{5}{2}\right)\right]\tilde{w}_1(y)=0
%\end{multline}
\begin{multline}\label{eq:hw1}
y^2(1-y)\tilde{w}_1^{(3)}(y)+y\left(\left(p-\frac{13}{2}\right)y+3\right)\tilde{w}_1''(y)-\left(y\left(\frac{305}{36}-\frac{1}{3}(10-p)p\right)-\frac{3}{4}\right)\tilde{w}_1'(y)+\\
+\frac{1}{27}\left(p-\frac{5}{2}\right)\tilde{w}_1(y)=0
\end{multline}
which is a generalized hypergeomtric equation (~16.8.5 \cite{DLMF}) with parameters
\begin{align*}
\mathbf{a}_0=\left(\frac{3}{2}-\frac{p}{3};\frac{7}{6}-\frac{p}{3};\frac{5}{6}-\frac{p}{3}\right) & \qquad\qquad \mathbf{b}_0=\left(\frac{1}{2};\frac{3}{2}\right)
\end{align*}
therefore, $\tilde{w}_1(y)=c_1\,\,{}_3F_2\left(\mathbf{a}_0;\mathbf{b}_0;y\right)+R(\zeta)$ for some function $R(\zeta)$ which can be determined from the integral equation.
Then we look at equation \eqref{w2}: its Borel transform is
\begin{multline}
-\zeta^3\tilde{w}_2(\zeta)-2\zeta^2\tilde{w}_2(\zeta)-\frac{8}{9}\zeta\tilde{w}_2(\zeta)+\frac{1-2p}{2}\int_0^\zeta t^2\tilde{w}_2(t)dt-\frac{2-4p}{3}\int_0^\zeta(-t\tilde{w}_2(t))dt+\\
+\frac{5+24p+12p^2}{36}\int_0^\zeta(\zeta-t)(-t\tilde{w}_2(t))dt
-\frac{5+24p+12p^2}{54}\int_0^\zeta(\zeta-t)\tilde{w}_2(t)dt +\\
-\left(\frac{5}{54}+\frac{59}{108}p+\frac{5}{18}p^2+\frac{1}{27}p^3\right)\int_0^\zeta\frac{(\zeta-t)^2}{2}\tilde{w}_2(t)dt=0
\end{multline}
and taking three derivatives it simplifies to
\begin{multline}
\left[\left(\zeta^3+2\zeta^2+\frac{8}{9}\zeta\right)\partial_\zeta^3 +\frac{8}{3}\partial_\zeta^2+\left(\frac{17}{2}+p\right)\zeta\left(\zeta+\frac{4}{3}\right)\partial_\zeta^2+\right.\\
\left. \left(\frac{p^2}{3}+\frac{14}{3}p+\frac{581}{36}\right)\left(\zeta+\frac{2}{3}\right)\partial_\zeta+\frac{1}{27}\left(p+\frac{7}{2}\right)\left(p+\frac{11}{2}\right)\left(p+\frac{15}{2}\right)\right]\tilde{w}_2(\zeta)=0
\end{multline}
define $y=\zeta\left(\zeta+\frac{4}{3}\right)$
\begin{multline}\label{eq1}
\left[y\left(y+\frac{4}{9}\right)^2\partial_y^3+2\left(\frac{3}{2}y+\frac{4}{3}+\frac{y}{2}\left(\frac{17}{2}+p\right)\right)\left(y+\frac{4}{9}\right)\partial_y^2+\left(\frac{2}{3}+\frac{y}{4}\left(\frac{17}{2}+p\right)\right)\partial_y\right.\\
\left.+\frac{1}{4}\left(\frac{p^3}{3}+\frac{14}{3}p+\frac{581}{36}\right)\left(y+\frac{4}{9}\right)\partial_y+\frac{1}{8\cdot 27}\left(p+\frac{7}{2}\right)\left(p+\frac{11}{2}\right)\left(p+\frac{15}{2}\right)\right]\tilde{w}_2(y)=0
\end{multline}
which now looks like a generalized hypergeometric equation. Indeed setting $t=\tfrac{9}{4}y+1$, \eqref{eq1} reads
\begin{multline}
\left[t^2(1-t)\partial_t^3-t\left(\big(\frac{23}{4}+\frac{p}{2}\big)t-\frac{p}{2}-\frac{11}{4}\right)\partial_t^2-\left(-\frac{5}{8}-\frac{p}{4}+t\Big(\frac{887}{144}+\frac{17}{12}p+\frac{p^2}{12}\Big)\right)\partial_t +\right.\\
\left. -\frac{1}{8\cdot 27}\left(p+\frac{7}{2}\right)\left(p+\frac{11}{2}\right)\left(p+\frac{15}{2}\right)\right]\tilde{w}_2(t)=0
\end{multline}
hence a solution is given by the generalized hypergeometric function ${}_3F_2\left(\mathbf{a};\mathbf{b};y\right)$ with parameters
\begin{align*}
\mathbf{a}=\left(\frac{5}{4}+\frac{p}{6};\frac{7}{12}+\frac{p}{6};\frac{11}{12}+\frac{p}{6}\right) & \qquad\qquad \mathbf{b}=\left(\frac{1}{2};\frac{5}{4}+\frac{p}{2}\right)
\end{align*}
and we denote $\hat{w}_2(\zeta)=c_2\,\, {}_3F_2\left(\mathbf{a};\mathbf{b};\left(\tfrac{3}{2}\zeta+1\right)^2\right)$. The equation \eqref{w3} differes from \eqref{w2} for few signs: we find that its Borel transform is
\begin{multline}
-\zeta^3\tilde{w}_2(\zeta)+2\zeta^2\tilde{w}_2(\zeta)-\frac{8}{9}\zeta\tilde{w}_2(\zeta)+\frac{1-2p}{2}\int_0^\zeta t^2\tilde{w}_2(t)dt+\frac{2-4p}{3}\int_0^\zeta(-t\tilde{w}_2(t))dt+\\
+\frac{5+24p+12p^2}{36}\int_0^\zeta(\zeta-t)(-t\tilde{w}_2(t))dt
+\frac{5+24p+12p^2}{54}\int_0^\zeta(\zeta-t)\tilde{w}_2(t)dt +\\
-\left(\frac{5}{54}+\frac{59}{108}p+\frac{5}{18}p^2+\frac{1}{27}p^3\right)\int_0^\zeta\frac{(\zeta-t)^2}{2}\tilde{w}_2(t)dt=0
\end{multline}
and differentiating three times we find a generalized hypergeometric equation with paramters $\mathbf{a},\mathbf{b}$ in the variable $y=\left(\tfrac{3}{2}\zeta-1\right)^2$, i.e. $\hat{w}_3(\zeta)= c_3\,\, {}_3F_2\left(\mathbf{a};\mathbf{b};\left(\tfrac{3}{2}\zeta-1\right)^2\right)$. In particular,
\begin{equation}
\hat{w}_3(\zeta)=C_{23}\hat{w}_2(\zeta-\tfrac{4}{3})
\end{equation}
%\begin{remark}
%We notice that if $p=\tfrac{1}{2}$ then $\hat{w}_1(\zeta), \hat{w}_2(\zeta)$ and $\hat{w}_3(\zeta)$ are generalized hypergeometric functions with the same coefficients:
%\begin{align*}
%\mathbf{a}_0=\left(\frac{3}{2}-\frac{1}{6},\frac{7}{6}-\frac{1}{6},\frac{5}{6}-\frac{1}{6}\right)=\left(\frac{4}{3},1,\frac{2}{3}\right) & \qquad\qquad \mathbf{b}_0=\left(\frac{1}{2},\frac{3}{2}\right) \\
%\mathbf{a}=\left(\frac{5}{4}+\frac{1}{12},\frac{7}{12}+\frac{1}{12},\frac{11}{12}+\frac{1}{12}\right)=\left(\frac{4}{3},\frac{2}{3},1\right) & \qquad\qquad \mathbf{b}=\left(\frac{1}{2},\frac{5}{4}+\frac{1}{4}\right)=\left(\frac{1}{2},\frac{3}{2}\right)
%\end{align*}
%
%hence for $p=\frac{1}{2}$
%
%\begin{equation}
%\hat{w}_1(\zeta)=C_{12}\hat{w}_2(\zeta-\tfrac{2}{3})=C_{13}\hat{w}_3(\zeta+\tfrac{2}{3})
%\end{equation}
%\end{remark}
\subsection{Analytic continuation}
In [\textbf{D.B. Karp and E.G. Prilepkina} formula 3.1 (see also \textsf{https://arxiv.org/pdf/2110.12219.pdf} equation 27)] the authors compute the analytic continuation of generalized hypergeomtric functions across the branch cut
\begin{equation}
{}_qF_{q-1}\left(\mathbf{a};\mathbf{b};x+i0\right)-{}_qF_{q-1}\left(\mathbf{a};\mathbf{b};x-i0\right)=2\pi i\frac{\Gamma(\mathbf{b})}{\Gamma(\mathbf{a})}G_{q,q}^{q,0}\left(1,\mathbf{b};\mathbf{a};\frac{1}{x}\right).
\end{equation}
We first consider $\hat{w}_1(\zeta)=c_1\,\, {}_3F_2\left(\mathbf{a}_0;\mathbf{b}_0;\tfrac{9}{4}\zeta^2\right)$, it has a branch cut at $\zeta\in [\tfrac{2}{3},+\infty)$ and another for $\zeta\in (-\infty,-\tfrac{2}{3}]$. The jumps can be computed as follows
\begin{align*}
{}_3F_2\left(\mathbf{a}_0;\mathbf{b}_0;y+i0\right)-{}_3F_2\left(\mathbf{a}_0;\mathbf{b}_0;y-i0\right)&=2\pi i\frac{\Gamma(\mathbf{b}_0)}{\Gamma(\mathbf{a}_0)}G_{3,3}^{3,0}\left(1,\mathbf{b}_0;\mathbf{a}_0;\frac{1}{y}\right)\\
&=2\pi i \frac{\Gamma(\mathbf{b}_0)}{\Gamma(\mathbf{a}_0)}G_{3,3}^{0,3}\left(1-\mathbf{a}_0;0,1-\mathbf{b}_0;y\right)\\
&=2\pi i \frac{\Gamma(\mathbf{b}_0)}{\Gamma(\mathbf{a}_0)}G_{3,3}^{0,3}\left(\mathbf{a}_0';0,\frac{1}{2},-\frac{1}{2};y\right)\\
&=2\pi i \frac{\Gamma(\mathbf{b_0})}{\Gamma(\mathbf{a}_0)}G_{3,3}^{0,3}\left(\mathbf{a}_0';\mathbf{b}_0';y\right)
\end{align*}
Notice that equation \eqref{eq:hw1} is also the differential equation for Meijer G-funtion $G_{3,3}^{3,0}(\mathbf{a}'_0;\mathbf{b}'_0;y)$ where
\begin{align*}
\mathbf{a}_0'=\left(\frac{p}{3}-\frac{1}{2};\frac{p}{3}-\frac{1}{6};\frac{p}{3}+\frac{1}{6}\right) & \qquad\qquad \mathbf{b}_0'=\left(0;\frac{1}{2};-\frac{1}{2}\right)
\end{align*}
\subsubsection{$\mathbf{\hat{w}_2(\zeta)}$ and $\mathbf{\hat{w}_3(\zeta)}$}
We consider $\hat{w}_2(\zeta)$, it has a branch cut at $\zeta\in [0,+\infty)$ and $\zeta\in(-\infty,-\tfrac{4}{3}]$,
\color{red}
We first study the equation \eqref{w1}: its unique formal solution $\tilde{w}_1(z)$ has the following coefficients (we compute them with Mathematica)
\begin{equation}
a_{1,2j}=\frac{\Gamma\left(1+3j-p\right)}{3^j\Gamma(1+j)\Gamma(1-p)} \,\qquad j\geq 0
\end{equation}
Notice that $a_{1,j}$ are well defined only for $p\in\C\setminus\lbrace 1,2,3,...\rbrace$. However, for $p=1,2,3$ the solution is well defined and constant $\tilde{w}_1(z)=1$. Therefore the Borel transform of $\tilde{w}_1(z)$ is
\begin{equation}
\hat{w}_1(\zeta)=\begin{cases}
\delta & \text{if } p=1,2,3 \\
\delta+\zeta\frac{\Gamma(4-p)}{3\Gamma(1-p)}{}_3F_2\left(\frac{4-p}{3},\frac{5-p}{3},2-\frac{p}{3};\frac{3}{2},2;\frac{9}{4}\zeta^2\right) & \text{if } p\in\C\setminus\lbrace 1,2,3,...\rbrace
\end{cases}
\end{equation}
In particular, the generalized hypergeometric series has a branch cut singularity at $\zeta=\pm\tfrac{3}{2}$. We expect that $\tilde{w}_1(z)$ is a simple resurgent fuction such that
\begin{align*}
\hat{w}_1(\zeta+\tfrac{2}{3})&=\delta+\frac{C}{2\pi i\zeta}+\frac{1}{2\pi i}\log(\zeta)\hat{w}_2(\zeta)+\text{hol. fct.}\\
\hat{w}_1(\zeta-\tfrac{2}{3})&=\delta+\frac{C}{2\pi i\zeta}+\frac{1}{2\pi i}\log(\zeta)\hat{w}_3(\zeta)+\text{hol. fct.}
\end{align*}
In [\textbf{D.B. Karp and E.G. Prilepkina} formula 3.1 (see also \textsf{https://arxiv.org/pdf/2110.12219.pdf} equation 27)] the authors compute the analytic continuation of generalized hypergeomtric functions across the branch cut
\begin{equation}
{}_qF_{q-1}\left(\mathbf{a};\mathbf{b};x+i0\right)-{}_qF_{q-1}\left(\mathbf{a};\mathbf{b};x-i0\right)=2\pi i\frac{\Gamma(\mathbf{b}-d+1)}{\Gamma(\mathbf{a}-d+1)}x^{d-1}G_{q,q}^{q,0}\left(d,\mathbf{b};\mathbf{a};\frac{1}{x}\right)
\end{equation}
which in our case becomes
\begin{align*}
\frac{3}{2}\zeta&\left({}_3F_2\left(\frac{4-p}{3},\frac{5-p}{3},2-\frac{p}{3};\frac{3}{2},2;\frac{9}{4}\zeta^2+i0\right)-{}_3F_2\left(\frac{4-p}{3},\frac{5-p}{3},2-\frac{p}{3};\frac{3}{2},2;\frac{9}{4}\zeta^2-i0\right)\right)=\\
&=2\pi i\frac{\Gamma(\mathbf{b}+\tfrac{1}{2})}{\Gamma(\mathbf{a}+\tfrac{1}{2})}G_{3,3}^{3,0}\left(\frac{1}{2},\frac{3}{2},2;\frac{4-p}{3},\frac{5-p}{3},2-\frac{p}{3};\frac{4}{9}\zeta^{-2}\right)\\
&=2\pi i\frac{\Gamma(\mathbf{b}+\tfrac{1}{2})}{\Gamma(\mathbf{a}+\tfrac{1}{2})}G_{3,3}^{0,3}\left(\frac{p-1}{3},\frac{p-2}{3},\frac{p}{3}-1;\frac{1}{2},-\frac{1}{2},-1;\frac{9}{4}\zeta^{2}\right)
\end{align*}
When $p=1,2,3$ the solution is a trivial resurgent function, it is constant.
Let us now consider the formal solution $\tilde{w}_2(z)$ and $\tilde{w}_3(z)$. The recursive relation for $a_{2,j},a_{3,j}$ have not a simple expressions as it is for $a_{1,j}$. However, we compute numerically their first coefficients:
\begin{align*}
&j=1 & 2 & 3& 4& 5& 6& 7 \\
a_{2,j}& & & & & & & \\
a_{3,j}& & & & & & &
\end{align*}
\color{black}
Then we look at the Borel transform of $\tilde{W}_2, \tilde{W}_3$: their equations have some symmetries in the coefficients, namely they differ by a sing in the even degree coefficients.
\bibliographystyle{utphys}
\bibliography{airy-resurgence}
\end{document}