-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathFFT_OpenCL_LAC.h
349 lines (303 loc) · 20 KB
/
FFT_OpenCL_LAC.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/* The information in this file is
* Copyright (C) 2011, Sven De Smet <[email protected]>
* and is subject to the terms and conditions of the
* GNU Lesser General Public License Version 2.1
* The license text is available from
* http://www.gnu.org/licenses/lgpl.html
*/
#ifndef FFT_OPENCL_LAC_H
#define FFT_OPENCL_LAC_H
#include <vector>
#include <sstream>
#include <string>
#include <exception>
#include <sys/types.h>
#include "OpenCLFFTAlgorithm.h"
#include "tests/Timer.h"
#include "SimpleMath.h"
#define DBG(a) a
template <class D> class FFT_OpenCL_LAC : public OpenCLFFTAlgorithm<D> {
public:
typedef PlannarizedDataInterface<D> DataInterfaceType;
//typedef SplitInterleavedDataInterface<D> DataInterfaceType;
private:
ComplexArrayCL<D>* data[2];
bool forward;
std::vector<cl::Kernel*> kernels;
std::vector<cl::Event> kernelEvents;
CLProgram* program;
std::vector<streng> src;
DataInterfaceType* arrayDataInterface;
public:
static streng getName() { return "Shared memory, contiguous OpenCL FFT"; }
std::vector<int> AGs, BGs, NGs;
static int getRequiredMemory(int n) { return 3*sizeof(Complex<D>)*n; }
static int getMaxBatchSize(int n) { return OpenCLAlgorithm::getGlobalMemory()/getRequiredMemory(n); }
FFT_OpenCL_LAC(int iSize, bool iForward = true, int iBatchCount = 1) : FFT<D>(iSize, iBatchCount), OpenCLAlgorithm(), forward(iForward), program(NULL) {
this->dataInterface = arrayDataInterface = new DataInterfaceType(this->batchCount*this->size);
if (getMaxBatchSize(this->size) < this->batchCount) { printf("Insufficient global memory"); } // throw exception
data[0] = new ComplexArrayCL<float>(*this->context, arrayDataInterface->in);
data[1] = new ComplexArrayCL<float>(*this->context, arrayDataInterface->out);
if (this->size > 1) {
int defaultBGl2 = getDefaultLocalityFactorL2(0);
int log2Size = ceilog(this->size, 2);
int stepsG = (log2Size + (defaultBGl2 - 1))/defaultBGl2;
BGs = std::vector<int>(log2Size/defaultBGl2, 1 << defaultBGl2);
if (log2Size != ceilint(log2Size, defaultBGl2)) BGs.push_back(1 << (log2Size % defaultBGl2));
this->computeParameters(AGs, BGs, NGs);
for (int qG = 1; qG <= stepsG; ++qG) src.push_back(generateKernel(qG - 1));
program = new CLProgram(*this->context, src, this->devicesToUse);
for (int qG = 1; qG <= stepsG; ++qG) kernels.push_back(program->getKernel(streng("contiguousFFT_step") + intToStr(qG)));
}
this->kernelTimers.resize(kernels.size()); // printf("Initialization complete"); fflush(stdout);
}
double getTime(int first, bool firstStart, int last, bool lastStart) {
cl_ulong start, end;
clGetEventProfilingInfo(kernelEvents[last](), lastStart ? CL_PROFILING_COMMAND_START : CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL);
clGetEventProfilingInfo(kernelEvents[first](), firstStart ? CL_PROFILING_COMMAND_START : CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &start, NULL);
return (end - start) * 1.0e-9f;
}
int getDefaultLocalityFactorL2(int level) { int factors[3] = { 3, 1, 1 }; return factors[level]; }
// OpenCLAlgorithm
virtual double getTotalComputationFlops(int kernel) { return (5.0*this->size)*(log(BGs[kernel])/log(2)); }
virtual streng getKernelInfo(int kernel) { return intToStr(ceilog(BGs[kernel], 2)); }
void printGPUDebugData(int qG) {
data[(qG & 1) ^ 1]->enqueueReadArray(*this->commandQueue, *arrayDataInterface->in);
printf("\n%i qG = %i", (qG & 1) ^ 1, qG); for (int q = 0; q < this->size; ++q) arrayDataInterface->in->getElement(q).print((q & 7) == 7);
}
int getSwarmSize(int qG) { return 1; } //mAx(1, mIn(16, mIn(this->size/NGs[qG - 1], getButterflyCount(qG)))); }
int getButterflyCount(int qG) { return this->size/BGs[qG - 1]; }
int getSwarmCount(int qG) { return getButterflyCount(qG)/getSwarmSize(qG); }
int getThreadsPerWarpL2() { return 1; }
int getThreadsPerWarp() { return 1 << getThreadsPerWarpL2(); }
int getActualThreadsPerWarpL2(int qG) { return 0*mIn(getThreadsPerWarpL2(), ceilog(getSwarmCount(qG)/getWarpsPerKernel(qG), 2)); }
int getThreadsPerBlock(int qG) { return getWarpsPerKernel(qG) << getActualThreadsPerWarpL2(qG); }
int getWarpsPerKernel(int qG) { return mIn(4, mAx(1, 1 << mAx(0, (ceilog(BGs[qG - 1], 2) - getDefaultLocalityFactorL2(1))))); }
int getWorkItemsPerKernel(int qG) { return getSwarmCount(qG)*getWarpsPerKernel(qG); }
virtual void setKernelParameters(int kernelIx, cl::Kernel& kernel) { int q_G = kernelIx; int qG = q_G + 1;
kernel.setArg<cl_mem>(0, data[(qG ^ 1) & 1]->getData());
kernel.setArg<cl_mem>(1, data[(qG ^ 0) & 1]->getData());
}
virtual void execute() { //printf("Starting execution with %i kernels", (int) kernels.size()); fflush(stdout);
if (this->size == 1) { arrayDataInterface->out->setElement(0, arrayDataInterface->in->getElement(0)); }
else {
for (int q = 0; q < this->size; ++q) arrayDataInterface->out->setElement(q, 888); data[1]->enqueueWriteArray(*this->commandQueue, *arrayDataInterface->out);
data[0]->enqueueWriteArray(*this->commandQueue, *arrayDataInterface->in);
kernelEvents.clear();
for (int qG = 1; qG <= kernels.size(); ++qG) { cl::Kernel* kernel = kernels[qG - 1]; //printf("kernel q = %i", qG);
size_t workGroupSize;
kernel->getWorkGroupInfo<size_t>(this->devicesToUse[0], CL_KERNEL_WORK_GROUP_SIZE, &workGroupSize); // printf("[workGroupSize = %i]", workGroupSize);
int workItems = getWorkItemsPerKernel(qG);
int localSize = mIn(mIn(workItems, workGroupSize), getThreadsPerBlock(qG));
// printf("<<%i - %i>>", (ceilint(workItems, localSize)), (localSize));
cl::KernelFunctor func = kernel->bind(*this->commandQueue, cl::NDRange(ceilint(workItems, localSize)), cl::NDRange(localSize));
setKernelParameters(qG - 1, *kernel);
printGPUDebugData(qG);
try { kernelEvents.push_back(func()); } // enqueue kernel + retain kernel event
catch (cl::Error e) { printf("CL Exception"); CLException cle = CLException(e); cle.handle(); fflush(stdout); }
catch (...) { printf("Unknown exception"); fflush(stdout); }
} // printf("Computation ends..."); fflush(stdout);
printGPUDebugData(kernels.size() + 1);
data[kernels.size() & 1]->enqueueReadArray(*this->commandQueue, *arrayDataInterface->out);
kernelEvents[kernels.size() - 1].wait();
if (this->timerComputation) this->timerComputation->addRun(getTime(0, true, kernels.size() - 1, false));
for (int qG = 1; qG <= kernels.size(); ++qG) this->kernelTimers[qG - 1].addRun(getTime(qG - 1, true, qG - 1, false));
}
}
virtual ~FFT_OpenCL_LAC() {
for (int d = 0; d < 2; ++d) delete data[d];
kernelEvents.clear();
for (int k = 0; k < (int) kernels.size(); ++k) delete kernels[k];
delete program;
}
/*
0 qG = 1(1.000000, 0.000000)(0.707107, 0.000000)(0.000000, 0.000000)(-0.707107, 0.000000)(-1.000000, 0.000000)(-0.707107, 0.000000)(-0.000000, 0.000000)(0.707107, 0.000000)
1 qG = 2(0.000000, 0.000000)(0.000000, 0.000000)(-0.000000, 0.000000)(0.000000, 0.000000)(2.000000, 0.000000)(1.414214, 0.000000)(0.000000, 0.000000)(-1.414214, 0.000000)
1 qG = 2(-0.000000, 0.000000)(0.000000, 0.000000)(2.000000, -0.000000)(1.414215, 1.414214)(0.000000, 0.000000)(0.000000, 0.000000)(2.000000, 0.000000)(1.414212, -1.414214)
0 qG = 3(-0.000000, 0.000000)(4.000001, -0.000001)(0.000000, 0.000000)(0.000001, 0.000004)(-0.000000, 0.000000)(-0.000001, 0.000001)(0.000000, 0.000000)(3.999999, -0.000004)
*/
virtual streng generateKernel(int q_G) { int qG = q_G + 1;
// printf("Generate Kernel (%i, %i): [%i] BM = ", qG, LG, BGs[q_G]);
int LG = this->size;
int plannarMask = (1 << GlobalPlannarLevel) - 1;
int defaultBMl2 = getDefaultLocalityFactorL2(1); int defaultBM = 1 << defaultBMl2;
int BGl2 = ceilog(BGs[q_G], 2);
std::vector<int> BM = std::vector<int>(BGl2/defaultBMl2, defaultBM);
if (BGl2 != ceilint(BGl2, defaultBMl2)) BM.push_back(1 << (BGl2 % defaultBMl2));
int kM = BM.size();
for (int q = 0; q < kM; ++q) printf("{%i}", BM[q]);
std::vector<int> AM, NM;
this->computeParameters(AM, BM, NM);
//int swarmStrideLevel = 5;
int phiL2 = getThreadsPerWarpL2();
int sharedBufferLengthL = 2;
int sharedBufferLengthM = getWarpsPerKernel(qG)*sharedBufferLengthL;
int sharedDataSize = sharedBufferLengthM << getActualThreadsPerWarpL2(qG);
std::stringstream result;
if (qG == 1) result << KomplexMath::getDeclarations();
result << "__kernel void contiguousFFT_step" << qG << "(__global float *in, __global float *out) {\n";
result << "__local float sharedData[" << sharedDataSize << "];";
result << "int jG = get_global_id(0);\n"; // = phi*w + v \n
/* int swarmIxOffset = globid >> " << swarmStrideLevel << ";\n\
int subSwarmIx = globid & " << ((1 << swarmStrideLevel) - 1) << ";\n\
for (int swarmIx = 0; swarmIx < " << swarmSize << "; ++swarmIx) {\n\
int j = subSwarmIx + ((swarmIxOffset*" << swarmSize << " + swarmIx) << " << swarmStrideLevel << ");\n";*/
result << "if (jG < " << (LG/BGs[q_G])*getWarpsPerKernel(qG) << ") {\n";
printf("(wpk = %i)", getWarpsPerKernel(qG));
result << "int jM = (jG >> " << getActualThreadsPerWarpL2(qG) << ") % " << getWarpsPerKernel(qG) << ";\n";
// result << "out[jG] = jG; return;";
printf("(actualThreadsPerWarp = %i)", 1 << getActualThreadsPerWarpL2(qG));
// result << "out[jG] = jM; return;";
result << "jG = ((jG >> " << getActualThreadsPerWarpL2(qG) << ") / " << getWarpsPerKernel(qG) << ") << " << getActualThreadsPerWarpL2(qG) << ";\n";
// result << "out[jG] = jG; return;";
result << "\
int gG = jG/" << LG/NGs[q_G] << ";\n\
int zG = jG - " << LG/NGs[q_G] << "*gG;\n";
// M-Level FFT
int maxBM = 0;
for (int m = 0; m < (int) BM.size(); ++m) maxBM = mAx(BM[m], maxBM);
Array buff0 = Array("K", maxBM, true, "buff0_");
Array buff1 = Array("K", maxBM, true, "buff1_");
Array* buff[2] = { &buff0, &buff1 };
result << buff0.getDeclaration() << buff1.getDeclaration();
int bX = 0;
for (int qM = 1; qM <= BM.size(); ++qM) { int q_M = qM - 1; result << "{";
result << "\
int gM = jM/" << BGs[q_G]/NM[q_M] << ";\
int zM = jM - " << BGs[q_G]/NM[q_M] << "*gM;";
std::vector<int> AL, NL, BL = std::vector<int>(ceilog(BM[q_M], 2), 2);
this->computeParameters(AL, BL, NL);
int kL = BL.size();
// G&M-Level Read (and pretwiddle)
result << "int readStartOffsetM = zM + " << ((BGs[q_G]/NM[q_M]) * BM[q_M]) << "*gM;\n";
if (qM == 1) {
result << "int readStartOffsetG = zG + " << ((LG/NGs[q_G]) * BGs[q_G]) << "*gG;\n";
for (int sM = 0; sM < BM[q_M]; ++sM) { result << "{"
<< "int index = readStartOffsetG + (readStartOffsetM + " << sM*(BGs[q_G]/NM[q_M]) << ")*" << (LG/NGs[q_G]) << ";"
<< "/*if (index < " << this->size << ")*/ { int ix = ((index >> " << GlobalPlannarLevel << ") << " << (GlobalPlannarLevel + 1) << ") | (index & " << plannarMask << ");"
<< buff[bX]->getItem(sM)() << ".r = in[ix];"
<< buff[bX]->getItem(sM)() << ".i = in[ix + " << (1 << GlobalPlannarLevel) << "];"
<< "}}\n";
}
if (qG > 1) for (int sM = 0; sM < BM[q_M]; ++sM) { // Pretwiddle
result << buff[bX]->getItem(sM)()
<< " = mul(" << buff[bX]->getItem(sM)() << ", unit(-(readStartOffsetM + " << sM*(BGs[q_G]/NM[q_M]) << ")*gG, "<< NGs[q_G] << ")" << ");\n";
}
} else { int q_MW = q_M - 1; result << "{"; // Local exchange
result << "int coreIx = (jG & " << ((1 << getActualThreadsPerWarpL2(qG)) - 1) << ");";
result << "for (int n = 0; n < " << sharedBufferLengthM << "; ++n) sharedData[((jM*" << sharedBufferLengthM << " + n) << " << getActualThreadsPerWarpL2(qG) << ") + coreIx] = 777;";
result << "barrier(CLK_LOCAL_MEM_FENCE);\n";
for (int l = 0; l < maxBM; l++) result << buff[bX ^ 1]->getItem(l)() << " = komplex(333.f, 44.f);";
result << "\
int gR = gM;\
int zR = zM;\
int gW = jM/" << BGs[q_G]/NM[q_MW] << ";\
int zW = jM - " << BGs[q_G]/NM[q_MW] << "*gW;\
int gR_div_AMW = (gR/" << AM[q_MW] << ");\
int gR_mod_AMW = gR - " << AM[q_MW] << "*gR_div_AMW;\
int zW_div_DMR = (zW/" << BGs[q_G]/NM[q_M] << ");\
int zW_mod_DMR = zW - " << BGs[q_G]/NM[q_M] << "*zW_div_DMR;\
";
if (BM[q_M] != BM[q_MW]) printf("Differing radices!!!");
for (int syncStep = 0; syncStep < ceildiv(BM[q_M], sharedBufferLengthL); ++syncStep) {
printf("(syncSteps = %i, sharedDataSize = %i)", ceildiv(BM[q_M], sharedBufferLengthL), sharedDataSize);
/* for (int sM = 0; sM < BM[q_M]; ++sM) { //
result << "out[2*(2*jG + jM) + " << sM << "] = " << buff[bX]->getItem(sM)() << ".r;";
result << "out[2*(2*jG + jM) + " << sM << " + " << (1 << GlobalPlannarLevel) << "] = " << buff[bX]->getItem(sM)() << ".i;";
}
result << "return;";*/
//result << "if ((jM == 0) && (jG == 0)) { out[0] = " << buff[bX ^ 1]->getItem(1)() << ".r; } return;";
streng components[2] = { "r", "i" };
for (int c = 0; c < 2; ++c) { result << "{\n";
// Write
// result << "if ((jM == 0) && (jG == 0)) out[0] = " << buff[bX]->getItem(1)() << ".r;"; result << "return;";
// result << "if ((jM == 0) && (jG == 0)) out[0] = (zW_div_DMR + zW_mod_DMR*" << (BM[q_M]) << ")*" << (sharedBufferLengthL << phiL2)
// << "+" << ((1 % sharedBufferLengthL) << phiL2) << " + coreIx; "; result << "return;";
/*for (int sM = 0; sM < BM[q_M]; ++sM) { //
result << "out[2*(2*jG + jM) + " << sM << "] = " << buff[bX]->getItem(sM)() << ".r;";
result << "out[2*(2*jG + jM) + " << sM << " + " << (1 << GlobalPlannarLevel) << "] = " << buff[bX]->getItem(sM)() << ".i;";
}
result << "return;";*/
for (int hW = sharedBufferLengthL*syncStep; hW < mIn(BM[q_M], sharedBufferLengthL*(syncStep + 1)); ++hW) {
result << "sharedData[(zW_div_DMR + zW_mod_DMR*" << (BM[q_M]) << ")*" << (sharedBufferLengthL << getActualThreadsPerWarpL2(qG))
<< "+" << ((hW % sharedBufferLengthL) << getActualThreadsPerWarpL2(qG)) << " + coreIx] = "
<< (*buff[bX])[hW]() << "." << components[c] << ";\n";
}
result << "barrier(CLK_LOCAL_MEM_FENCE);\n";
result << "for (int d = 0; d < " << this->size << "; ++d) out[d] = 555;";
//result << "if ((jM == 0) && (jG == 0)) out[0] = sharedData[32]; return;";
//result << "if ((jM == 0)) for (int d = 0; d < " << sharedDataSize <<"; ++d) out[4*jG + d] = sharedData[d]; return;";
// Read
result << "if ((gR/" << sharedBufferLengthL << ") == " << syncStep << ") {\n";
for (int sR = 0; sR < BM[q_M]; ++sR) {
result << (*buff[bX ^ 1])[sR]() << "." << components[c]
<< " = sharedData[gR_mod_AMW*" << (BM[q_M])*(sharedBufferLengthL << getActualThreadsPerWarpL2(qG)) << " + "<< sR*(sharedBufferLengthL << getActualThreadsPerWarpL2(qG))
<< "+" << "((gR_div_AMW % "<< sharedBufferLengthL << ") << " << getActualThreadsPerWarpL2(qG) << ")" << " + coreIx];\n";
}
result << "}";
result << "barrier(CLK_LOCAL_MEM_FENCE);\n";
result << "}";
}
}
bX ^= 1;
// (0.000000, 0.000000)(-0.000000, 0.000000)(0.000000, 0.000000)(-0.000000, 0.000000)(2.000000, 0.000000)(0.000000, 0.000000)(2.000000, 0.000000)(0.000000, 0.000000)
for (int sM = 0; sM < BM[q_M]; ++sM) { //
result << "out[2*(2*jG + jM) + " << sM << "] = " << buff[bX]->getItem(sM)() << ".r;";
result << "out[2*(2*jG + jM) + " << sM << " + " << (1 << GlobalPlannarLevel) << "] = " << buff[bX]->getItem(sM)() << ".i;";
}
result << "return;";
for (int sM = 0; sM < BM[q_M]; ++sM) { // Pretwiddle
result << buff[bX]->getItem(sM)()
<< " = mul(" << buff[bX]->getItem(sM)() << ", unit(" << -sM << "*gM, "<< NM[q_M]<< ")" << ");\n";
}
result << "}";
}
// L-level FFT
/*if (qM == 1)*/ for (int qL = 1; qL <= kL; ++qL) { int q_L = qL - 1;
Array& source = *buff[bX ^ (qL & 1) ^ 1];
Array& target = *buff[bX ^ (qL & 1)];
for (int gL = 0; gL < AL[qL - 1]; ++gL) { result << "{";
for (int zL = 0; zL < (BM[q_M]/NL[q_L]); ++zL) { result << "{";
for (int sL = 0; sL < BL[qL - 1]; ++sL) {
result << "const K s" << sL << " = "
<< KomplexConstMultiplication(KomplexUnit(-gL*sL, NL[qL - 1]), source.getItem((BM[q_M]/NL[qL - 1])*(BL[qL - 1] * gL + sL) + zL)).getRepresentation() << ";";
}
for (int hL = 0; hL < BL[qL - 1]; ++hL) {
result << target.getItem((BM[q_M]/NL[qL - 1])*(gL + AL[qL - 1]*hL) + zL).getRepresentation() << " = ";
for (int sL = 0; sL < BL[qL - 1] - 1; ++sL) result << "add(";
for (int sL = 0; sL < BL[qL - 1]; ++sL) {
if (sL > 0) result << ", ";
result << KomplexConstMultiplication(KomplexUnit(-hL*sL, BL[qL - 1]), streng("s") + intToStr(sL)).getRepresentation();
if (sL > 0) result << ")";
}
result << ";";
}
result << "}";
}
result << "}\n";
}
}
// G&M-Level Write
// result << "out[jM] = jM; return;";
if (qM == 2) {
result << "int writeStartOffsetG = zG + " << LG/NGs[q_G] << "*gG;\n";
result << "int writeStartOffsetM = zM + " << BGs[q_G]/NM[q_M] << "*gM;\n";
for (int hM = 0; hM < BM[q_M]; ++hM) { result << "{"
<< "int index = writeStartOffsetG + (writeStartOffsetM + " << hM*AM[q_M]*(BGs[q_G]/NM[q_M]) << ")*" << AGs[q_G]*(LG/NGs[q_G]) << ";"
<< "/*if (jM == 0)*/ if (index < " << this->size << ") { int ix = ((index >> " << GlobalPlannarLevel << ") << " << (GlobalPlannarLevel + 1) << ") | (index & " << plannarMask << ");"
<< "out[ix] = " << (*buff[bX ^ (kL & 1)])[hM]() << ".r;"
<< "out[ix + " << (1 << GlobalPlannarLevel) << "] = " << (*buff[bX ^ (kL & 1)])[hM]() << ".i;"
<< "}}\n";
}
// result << "out[jM] = jM;";
result << "return;";
}
result << "}";
bX = bX ^ (kL & 1);
}
result << "}}";
// printf("#####################\n%s\n", result.str().c_str());
return result.str();
}
};
#endif // FFT_OPENCL_LAC_H