-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathyolo.py
82 lines (56 loc) · 2.39 KB
/
yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
import argparse
import time
import cv2
import os
boxes=[]
confidences=[]
classIDs=[]
ap =argparse.ArgumentParser()
ap.add_argument("-c", "--confidence", type=float, default=0.5, help="minimum probability to filter weak detections")
ap.add_argument("-t", "--threshold", type=float, default=0.3, help="threshold when applying non-maxima suppression")
args=vars(ap.parse_args())
#labelsPath = os.path.sep.join([args["yolo"],"coco.names"])
def yolo(image):
LABELS =open("yolo/coco.names").read().strip().split("\n")
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8")
print("[INFO] loading YOLO from disk")
net=cv2.dnn.readNetFromDarknet("yolo/yolov3.cfg", "yolo/yolov3.weights")
#mage=cv2.imread("gallery/image1.png")
(H,W)=image.shape[:2]
ln=net.getLayerNames()
ln=[ln[i[0]-1] for i in net.getUnconnectedOutLayers()]
blob=cv2.dnn.blobFromImage(image,1/255.0, (416,416), swapRB=True, crop=False)
net.setInput(blob)
start=time.time()
layerOutputs=net.forward(ln)
end=time.time()
print("[INFO] YOLO took {:.6f} seconds".format(end-start))
for output in layerOutputs:
for detection in output:
scores=detection[5:]
classID=np.argmax(scores)
confidence=scores[classID]
if(confidence>args["confidence"]):
box=detection[0:4]*np.array([W, H, W, H])
(centreX, centreY, width, height) = box.astype("int")
x=int(centreX-(width/2))
y=int(centreY-(height/2))
boxes.append([x,y,int(width),int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
idxs=cv2.dnn.NMSBoxes(boxes, confidences,args["confidence"], args["threshold"])
if(len(idxs)>0):
for i in idxs.flatten():
(x, y)=(boxes[i][0], boxes[i][1])
(w, h)=(boxes[i][2], boxes[i][3])
color=[int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(image, (x, y), (x+w,y+h), color, 2)
text="{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i])
cv2.putText(image, text, (x, y-5), cv2.cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
#cv2.imshow("image", image)
#cv2.waitKey(0)
#cv2.imwrite("object1.png",image)
return boxes, classIDs
#print(yolo(cv2.imread("gallery/image1.png")))