To be and outstanding DEV and an advanced Python Django DRF and API backend development, you need to demonstrate a deep understanding of best practices, scalability, security, and performance optimization. Below is a comprehensive guide covering everything from project setup to advanced deployment techniques using Django, Django REST Framework (DRF), NGINX, and other professional tools.
- Use a modular project structure for scalability:
myproject/ ├── apps/ │ ├── users/ │ ├── products/ │ └── orders/ ├── config/ │ ├── settings/ │ │ ├── base.py │ │ ├── development.py │ │ └── production.py │ ├── urls.py │ └── wsgi.py ├── manage.py └── requirements/ ├── base.txt ├── development.txt └── production.txt
- Use
python-decouple
ordjango-environ
for environment variables. - Create separate settings files for development and production.
- Use Git with a proper
.gitignore
file. - Follow Git branching strategies (e.g., Git Flow).
- Use RESTful principles for API design.
- Version your APIs (e.g.,
/api/v1/
,/api/v2/
). - Use serializers for data validation and transformation.
- Implement pagination for large datasets:
class ProductViewSet(viewsets.ModelViewSet): queryset = Product.objects.all() serializer_class = ProductSerializer pagination_class = PageNumberPagination
- Use TokenAuthentication, JWT, or OAuth2 for secure authentication.
- Implement custom permissions:
class IsAdminOrReadOnly(permissions.BasePermission): def has_permission(self, request, view): if request.method in permissions.SAFE_METHODS: return True return request.user.is_staff
- Protect your API from abuse:
REST_FRAMEWORK = { 'DEFAULT_THROTTLE_CLASSES': [ 'rest_framework.throttling.AnonRateThrottle', 'rest_framework.throttling.UserRateThrottle' ], 'DEFAULT_THROTTLE_RATES': { 'anon': '100/day', 'user': '1000/day' } }
- Write unit tests using
pytest
or Django'sTestCase
. - Use
APIClient
for testing API endpoints:def test_product_list(self): response = self.client.get('/api/products/') self.assertEqual(response.status_code, 200)
- Use PostgreSQL or MySQL for production.
- Optimize queries using
select_related
andprefetch_related
.
- Add database indexes for frequently queried fields:
class Product(models.Model): name = models.CharField(max_length=255, db_index=True)
- Use Redis or Memcached for caching:
from django.core.cache import cache cache.set('key', 'value', timeout=60) cached_value = cache.get('key')
- Use Celery with Redis or RabbitMQ for async tasks:
from celery import shared_task @shared_task def send_email(): # Send email logic
- Use Django Channels for real-time features:
from channels.generic.websocket import AsyncWebsocketConsumer class ChatConsumer(AsyncWebsocketConsumer): async def connect(self): await self.accept()
- Use Let's Encrypt to enable HTTPS on your server.
- Use
django-csp
anddjango-security
for secure headers:MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'csp.middleware.CSPMiddleware', ]
- Use Django's built-in protections (e.g., ORM, template escaping).
- Use tools like
bandit
andsafety
to scan for vulnerabilities.
- Use Gunicorn with Uvicorn for ASGI support:
gunicorn myproject.asgi:application -k uvicorn.workers.UvicornWorker
- Optimize NGINX for performance:
worker_processes auto; events { worker_connections 1024; } http { gzip on; gzip_types text/plain application/json; }
- Use NGINX as a load balancer for multiple Django instances:
upstream django_servers { server 127.0.0.1:8000; server 127.0.0.1:8001; } server { location / { proxy_pass http://django_servers; } }
- Configure Django logging:
LOGGING = { 'version': 1, 'handlers': { 'file': { 'level': 'DEBUG', 'class': 'logging.FileHandler', 'filename': 'debug.log', }, }, 'loggers': { 'django': { 'handlers': ['file'], 'level': 'DEBUG', }, }, }
- Use Prometheus and Grafana for monitoring.
- Integrate Sentry for error tracking.
- Use GitHub Actions or GitLab CI for automated testing.
- Create a
Dockerfile
anddocker-compose.yml
for containerization:FROM python:3.9 WORKDIR /app COPY requirements.txt . RUN pip install -r requirements.txt COPY . . CMD ["gunicorn", "config.wsgi:application", "--bind", "0.0.0.0:8000"]
- Use Ansible or Terraform for infrastructure as code.
- Deploy to AWS, GCP, or DigitalOcean using Kubernetes or Docker Swarm.
- Use Swagger or drf-yasg for API documentation:
from drf_yasg import openapi from drf_yasg.views import get_schema_view schema_view = get_schema_view( openapi.Info( title="My API", default_version='v1', ), public=True, )
- Use MkDocs or Sphinx for project documentation.
- Implement GraphQL using
graphene-django
. - Use Elasticsearch for advanced search functionality.
- Add machine learning models using
scikit-learn
orTensorFlow
.
By following this guide, you’ll demonstrate a professional, scalable, and secure approach to Django DRF backend development, leaving a lasting impression.