Skip to content

Latest commit

 

History

History
267 lines (225 loc) · 7.11 KB

PRO-META-backend-eng.md

File metadata and controls

267 lines (225 loc) · 7.11 KB

To be and outstanding DEV and an advanced Python Django DRF and API backend development, you need to demonstrate a deep understanding of best practices, scalability, security, and performance optimization. Below is a comprehensive guide covering everything from project setup to advanced deployment techniques using Django, Django REST Framework (DRF), NGINX, and other professional tools.


1. Project Setup and Best Practices

1.1. Project Structure

  • Use a modular project structure for scalability:
    myproject/
    ├── apps/
    │   ├── users/
    │   ├── products/
    │   └── orders/
    ├── config/
    │   ├── settings/
    │   │   ├── base.py
    │   │   ├── development.py
    │   │   └── production.py
    │   ├── urls.py
    │   └── wsgi.py
    ├── manage.py
    └── requirements/
        ├── base.txt
        ├── development.txt
        └── production.txt
    

1.2. Environment Management

  • Use python-decouple or django-environ for environment variables.
  • Create separate settings files for development and production.

1.3. Version Control

  • Use Git with a proper .gitignore file.
  • Follow Git branching strategies (e.g., Git Flow).

2. Advanced Django REST Framework (DRF)

2.1. API Design

  • Use RESTful principles for API design.
  • Version your APIs (e.g., /api/v1/, /api/v2/).
  • Use serializers for data validation and transformation.
  • Implement pagination for large datasets:
    class ProductViewSet(viewsets.ModelViewSet):
        queryset = Product.objects.all()
        serializer_class = ProductSerializer
        pagination_class = PageNumberPagination

2.2. Authentication and Permissions

  • Use TokenAuthentication, JWT, or OAuth2 for secure authentication.
  • Implement custom permissions:
    class IsAdminOrReadOnly(permissions.BasePermission):
        def has_permission(self, request, view):
            if request.method in permissions.SAFE_METHODS:
                return True
            return request.user.is_staff

2.3. Throttling and Rate Limiting

  • Protect your API from abuse:
    REST_FRAMEWORK = {
        'DEFAULT_THROTTLE_CLASSES': [
            'rest_framework.throttling.AnonRateThrottle',
            'rest_framework.throttling.UserRateThrottle'
        ],
        'DEFAULT_THROTTLE_RATES': {
            'anon': '100/day',
            'user': '1000/day'
        }
    }

2.4. Testing APIs

  • Write unit tests using pytest or Django's TestCase.
  • Use APIClient for testing API endpoints:
    def test_product_list(self):
        response = self.client.get('/api/products/')
        self.assertEqual(response.status_code, 200)

3. Database Optimization

3.1. Use an Efficient Database

  • Use PostgreSQL or MySQL for production.
  • Optimize queries using select_related and prefetch_related.

3.2. Indexing

  • Add database indexes for frequently queried fields:
    class Product(models.Model):
        name = models.CharField(max_length=255, db_index=True)

3.3. Caching

  • Use Redis or Memcached for caching:
    from django.core.cache import cache
    cache.set('key', 'value', timeout=60)
    cached_value = cache.get('key')

4. Asynchronous Tasks

4.1. Celery for Background Tasks

  • Use Celery with Redis or RabbitMQ for async tasks:
    from celery import shared_task
    
    @shared_task
    def send_email():
        # Send email logic

4.2. Django Channels for WebSockets

  • Use Django Channels for real-time features:
    from channels.generic.websocket import AsyncWebsocketConsumer
    
    class ChatConsumer(AsyncWebsocketConsumer):
        async def connect(self):
            await self.accept()

5. Security Best Practices

5.1. HTTPS

  • Use Let's Encrypt to enable HTTPS on your server.

5.2. Secure Headers

  • Use django-csp and django-security for secure headers:
    MIDDLEWARE = [
        'django.middleware.security.SecurityMiddleware',
        'csp.middleware.CSPMiddleware',
    ]

5.3. SQL Injection and XSS Protection

  • Use Django's built-in protections (e.g., ORM, template escaping).

5.4. Regular Security Audits

  • Use tools like bandit and safety to scan for vulnerabilities.

6. Performance Optimization

6.1. Gunicorn and Uvicorn

  • Use Gunicorn with Uvicorn for ASGI support:
    gunicorn myproject.asgi:application -k uvicorn.workers.UvicornWorker

6.2. NGINX Configuration

  • Optimize NGINX for performance:
    worker_processes auto;
    events {
        worker_connections 1024;
    }
    http {
        gzip on;
        gzip_types text/plain application/json;
    }

6.3. Load Balancing

  • Use NGINX as a load balancer for multiple Django instances:
    upstream django_servers {
        server 127.0.0.1:8000;
        server 127.0.0.1:8001;
    }
    server {
        location / {
            proxy_pass http://django_servers;
        }
    }

7. Monitoring and Logging

7.1. Logging

  • Configure Django logging:
    LOGGING = {
        'version': 1,
        'handlers': {
            'file': {
                'level': 'DEBUG',
                'class': 'logging.FileHandler',
                'filename': 'debug.log',
            },
        },
        'loggers': {
            'django': {
                'handlers': ['file'],
                'level': 'DEBUG',
            },
        },
    }

7.2. Monitoring

  • Use Prometheus and Grafana for monitoring.
  • Integrate Sentry for error tracking.

8. CI/CD Pipeline

8.1. Automated Testing

  • Use GitHub Actions or GitLab CI for automated testing.

8.2. Dockerize Your Application

  • Create a Dockerfile and docker-compose.yml for containerization:
    FROM python:3.9
    WORKDIR /app
    COPY requirements.txt .
    RUN pip install -r requirements.txt
    COPY . .
    CMD ["gunicorn", "config.wsgi:application", "--bind", "0.0.0.0:8000"]

8.3. Deployment

  • Use Ansible or Terraform for infrastructure as code.
  • Deploy to AWS, GCP, or DigitalOcean using Kubernetes or Docker Swarm.

9. Documentation

9.1. API Documentation

  • Use Swagger or drf-yasg for API documentation:
    from drf_yasg import openapi
    from drf_yasg.views import get_schema_view
    
    schema_view = get_schema_view(
        openapi.Info(
            title="My API",
            default_version='v1',
        ),
        public=True,
    )

9.2. Project Documentation

  • Use MkDocs or Sphinx for project documentation.

10. Bonus:

  • Implement GraphQL using graphene-django.
  • Use Elasticsearch for advanced search functionality.
  • Add machine learning models using scikit-learn or TensorFlow.

By following this guide, you’ll demonstrate a professional, scalable, and secure approach to Django DRF backend development, leaving a lasting impression.