forked from dauparas/ProteinMPNN
-
Notifications
You must be signed in to change notification settings - Fork 1
/
protein_mpnn_run.py
423 lines (370 loc) · 25.9 KB
/
protein_mpnn_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import argparse
import os.path
def main(args):
import json, time, os, sys, glob
import shutil
import warnings
import numpy as np
import torch
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data.dataset import random_split, Subset
import copy
import torch.nn as nn
import torch.nn.functional as F
import random
import os.path
import subprocess
from protein_mpnn_utils import loss_nll, loss_smoothed, gather_edges, gather_nodes, gather_nodes_t, cat_neighbors_nodes, _scores, _S_to_seq, tied_featurize, parse_PDB
from protein_mpnn_utils import StructureDataset, StructureDatasetPDB, ProteinMPNN
if args.seed:
seed=args.seed
else:
seed=int(np.random.randint(0, high=999, size=1, dtype=int)[0])
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
hidden_dim = 128
num_layers = 3
if args.path_to_model_weights:
model_folder_path = args.path_to_model_weights
if model_folder_path[-1] != '/':
model_folder_path = model_folder_path + '/'
else:
file_path = os.path.realpath(__file__)
k = file_path.rfind("/")
if args.ca_only:
model_folder_path = file_path[:k] + '/ca_model_weights/'
else:
model_folder_path = file_path[:k] + '/vanilla_model_weights/'
checkpoint_path = model_folder_path + f'{args.model_name}.pt'
folder_for_outputs = args.out_folder
NUM_BATCHES = args.num_seq_per_target//args.batch_size
BATCH_COPIES = args.batch_size
temperatures = [float(item) for item in args.sampling_temp.split()]
omit_AAs_list = args.omit_AAs
alphabet = 'ACDEFGHIKLMNPQRSTVWYX'
omit_AAs_np = np.array([AA in omit_AAs_list for AA in alphabet]).astype(np.float32)
device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu")
if os.path.isfile(args.chain_id_jsonl):
with open(args.chain_id_jsonl, 'r') as json_file:
json_list = list(json_file)
for json_str in json_list:
chain_id_dict = json.loads(json_str)
else:
chain_id_dict = None
print(40*'-')
print('chain_id_jsonl is NOT loaded')
if os.path.isfile(args.fixed_positions_jsonl):
with open(args.fixed_positions_jsonl, 'r') as json_file:
json_list = list(json_file)
for json_str in json_list:
fixed_positions_dict = json.loads(json_str)
else:
print(40*'-')
print('fixed_positions_jsonl is NOT loaded')
fixed_positions_dict = None
if os.path.isfile(args.pssm_jsonl):
with open(args.pssm_jsonl, 'r') as json_file:
json_list = list(json_file)
pssm_dict = {}
for json_str in json_list:
pssm_dict.update(json.loads(json_str))
else:
print(40*'-')
print('pssm_jsonl is NOT loaded')
pssm_dict = None
if os.path.isfile(args.omit_AA_jsonl):
with open(args.omit_AA_jsonl, 'r') as json_file:
json_list = list(json_file)
for json_str in json_list:
omit_AA_dict = json.loads(json_str)
else:
print(40*'-')
print('omit_AA_jsonl is NOT loaded')
omit_AA_dict = None
if os.path.isfile(args.bias_AA_jsonl):
with open(args.bias_AA_jsonl, 'r') as json_file:
json_list = list(json_file)
for json_str in json_list:
bias_AA_dict = json.loads(json_str)
else:
print(40*'-')
print('bias_AA_jsonl is NOT loaded')
bias_AA_dict = None
if os.path.isfile(args.tied_positions_jsonl):
with open(args.tied_positions_jsonl, 'r') as json_file:
json_list = list(json_file)
for json_str in json_list:
tied_positions_dict = json.loads(json_str)
else:
print(40*'-')
print('tied_positions_jsonl is NOT loaded')
tied_positions_dict = None
if os.path.isfile(args.bias_by_res_jsonl):
with open(args.bias_by_res_jsonl, 'r') as json_file:
json_list = list(json_file)
for json_str in json_list:
bias_by_res_dict = json.loads(json_str)
print('bias by residue dictionary is loaded')
else:
print(40*'-')
print('bias by residue dictionary is not loaded, or not provided')
bias_by_res_dict = None
print(40*'-')
bias_AAs_np = np.zeros(len(alphabet))
if bias_AA_dict:
for n, AA in enumerate(alphabet):
if AA in list(bias_AA_dict.keys()):
bias_AAs_np[n] = bias_AA_dict[AA]
if args.pdb_path:
pdb_dict_list = parse_PDB(args.pdb_path, ca_only=args.ca_only)
dataset_valid = StructureDatasetPDB(pdb_dict_list, truncate=None, max_length=args.max_length)
all_chain_list = [item[-1:] for item in list(pdb_dict_list[0]) if item[:9]=='seq_chain'] #['A','B', 'C',...]
if args.pdb_path_chains:
designed_chain_list = [str(item) for item in args.pdb_path_chains.split()]
else:
designed_chain_list = all_chain_list
fixed_chain_list = [letter for letter in all_chain_list if letter not in designed_chain_list]
chain_id_dict = {}
chain_id_dict[pdb_dict_list[0]['name']]= (designed_chain_list, fixed_chain_list)
else:
dataset_valid = StructureDataset(args.jsonl_path, truncate=None, max_length=args.max_length)
print(40*'-')
checkpoint = torch.load(checkpoint_path, map_location=device)
print('Number of edges:', checkpoint['num_edges'])
noise_level_print = checkpoint['noise_level']
print(f'Training noise level: {noise_level_print}A')
model = ProteinMPNN(ca_only=args.ca_only, num_letters=21, node_features=hidden_dim, edge_features=hidden_dim, hidden_dim=hidden_dim, num_encoder_layers=num_layers, num_decoder_layers=num_layers, augment_eps=args.backbone_noise, k_neighbors=checkpoint['num_edges'])
model.to(device)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
# Build paths for experiment
base_folder = folder_for_outputs
if base_folder[-1] != '/':
base_folder = base_folder + '/'
if not os.path.exists(base_folder):
os.makedirs(base_folder)
if not os.path.exists(base_folder + 'seqs'):
os.makedirs(base_folder + 'seqs')
if args.save_score:
if not os.path.exists(base_folder + 'scores'):
os.makedirs(base_folder + 'scores')
if args.score_only:
if not os.path.exists(base_folder + 'score_only'):
os.makedirs(base_folder + 'score_only')
if args.conditional_probs_only:
if not os.path.exists(base_folder + 'conditional_probs_only'):
os.makedirs(base_folder + 'conditional_probs_only')
if args.unconditional_probs_only:
if not os.path.exists(base_folder + 'unconditional_probs_only'):
os.makedirs(base_folder + 'unconditional_probs_only')
if args.save_probs:
if not os.path.exists(base_folder + 'probs'):
os.makedirs(base_folder + 'probs')
# Timing
start_time = time.time()
total_residues = 0
protein_list = []
total_step = 0
# Validation epoch
with torch.no_grad():
test_sum, test_weights = 0., 0.
#print('Generating sequences...')
for ix, protein in enumerate(dataset_valid):
score_list = []
global_score_list = []
all_probs_list = []
all_log_probs_list = []
S_sample_list = []
batch_clones = [copy.deepcopy(protein) for i in range(BATCH_COPIES)]
X, S, mask, lengths, chain_M, chain_encoding_all, chain_list_list, visible_list_list, masked_list_list, masked_chain_length_list_list, chain_M_pos, omit_AA_mask, residue_idx, dihedral_mask, tied_pos_list_of_lists_list, pssm_coef, pssm_bias, pssm_log_odds_all, bias_by_res_all, tied_beta = tied_featurize(batch_clones, device, chain_id_dict, fixed_positions_dict, omit_AA_dict, tied_positions_dict, pssm_dict, bias_by_res_dict, ca_only=args.ca_only)
pssm_log_odds_mask = (pssm_log_odds_all > args.pssm_threshold).float() #1.0 for true, 0.0 for false
name_ = batch_clones[0]['name']
if args.score_only:
structure_sequence_score_file = base_folder + '/score_only/' + batch_clones[0]['name'] + '.npz'
native_score_list = []
global_native_score_list = []
for j in range(NUM_BATCHES):
randn_1 = torch.randn(chain_M.shape, device=X.device)
log_probs = model(X, S, mask, chain_M*chain_M_pos, residue_idx, chain_encoding_all, randn_1)
mask_for_loss = mask*chain_M*chain_M_pos
scores = _scores(S, log_probs, mask_for_loss)
native_score = scores.cpu().data.numpy()
native_score_list.append(native_score)
global_scores = _scores(S, log_probs, mask)
global_native_score = global_scores.cpu().data.numpy()
global_native_score_list.append(global_native_score)
native_score = np.concatenate(native_score_list, 0)
global_native_score = np.concatenate(global_native_score_list, 0)
ns_mean = native_score.mean()
ns_mean_print = np.format_float_positional(np.float32(ns_mean), unique=False, precision=4)
ns_std = native_score.std()
ns_std_print = np.format_float_positional(np.float32(ns_std), unique=False, precision=4)
global_ns_mean = global_native_score.mean()
global_ns_mean_print = np.format_float_positional(np.float32(global_ns_mean), unique=False, precision=4)
global_ns_std = global_native_score.std()
global_ns_std_print = np.format_float_positional(np.float32(global_ns_std), unique=False, precision=4)
ns_sample_size = native_score.shape[0]
np.savez(structure_sequence_score_file, score=native_score, global_score=global_native_score)
print(f'Score for {name_}, mean: {ns_mean_print}, std: {ns_std_print}, sample size: {ns_sample_size}, Global Score for {name_}, mean: {global_ns_mean_print}, std: {global_ns_std_print}, sample size: {ns_sample_size}')
elif args.conditional_probs_only:
print(f'Calculating conditional probabilities for {name_}')
conditional_probs_only_file = base_folder + '/conditional_probs_only/' + batch_clones[0]['name']
log_conditional_probs_list = []
for j in range(NUM_BATCHES):
randn_1 = torch.randn(chain_M.shape, device=X.device)
log_conditional_probs = model.conditional_probs(X, S, mask, chain_M*chain_M_pos, residue_idx, chain_encoding_all, randn_1, args.conditional_probs_only_backbone)
log_conditional_probs_list.append(log_conditional_probs.cpu().numpy())
concat_log_p = np.concatenate(log_conditional_probs_list, 0) #[B, L, 21]
mask_out = (chain_M*chain_M_pos*mask)[0,].cpu().numpy()
np.savez(conditional_probs_only_file, log_p=concat_log_p, S=S[0,].cpu().numpy(), mask=mask[0,].cpu().numpy(), design_mask=mask_out)
elif args.unconditional_probs_only:
print(f'Calculating sequence unconditional probabilities for {name_}')
unconditional_probs_only_file = base_folder + '/unconditional_probs_only/' + batch_clones[0]['name']
log_unconditional_probs_list = []
for j in range(NUM_BATCHES):
log_unconditional_probs = model.unconditional_probs(X, mask, residue_idx, chain_encoding_all)
log_unconditional_probs_list.append(log_unconditional_probs.cpu().numpy())
concat_log_p = np.concatenate(log_unconditional_probs_list, 0) #[B, L, 21]
mask_out = (chain_M*chain_M_pos*mask)[0,].cpu().numpy()
np.savez(unconditional_probs_only_file, log_p=concat_log_p, S=S[0,].cpu().numpy(), mask=mask[0,].cpu().numpy(), design_mask=mask_out)
else:
randn_1 = torch.randn(chain_M.shape, device=X.device)
log_probs = model(X, S, mask, chain_M*chain_M_pos, residue_idx, chain_encoding_all, randn_1)
mask_for_loss = mask*chain_M*chain_M_pos
scores = _scores(S, log_probs, mask_for_loss) #score only the redesigned part
native_score = scores.cpu().data.numpy()
global_scores = _scores(S, log_probs, mask) #score the whole structure-sequence
global_native_score = global_scores.cpu().data.numpy()
# Generate some sequences
ali_file = base_folder + '/seqs/' + batch_clones[0]['name'] + '.fa'
score_file = base_folder + '/scores/' + batch_clones[0]['name'] + '.npz'
probs_file = base_folder + '/probs/' + batch_clones[0]['name'] + '.npz'
print(f'Generating sequences for: {name_}')
t0 = time.time()
with open(ali_file, 'w') as f:
for temp in temperatures:
for j in range(NUM_BATCHES):
randn_2 = torch.randn(chain_M.shape, device=X.device)
if tied_positions_dict == None:
sample_dict = model.sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx, mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np, bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos, omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef, pssm_bias=pssm_bias, pssm_multi=args.pssm_multi, pssm_log_odds_flag=bool(args.pssm_log_odds_flag), pssm_log_odds_mask=pssm_log_odds_mask, pssm_bias_flag=bool(args.pssm_bias_flag), bias_by_res=bias_by_res_all)
S_sample = sample_dict["S"]
else:
sample_dict = model.tied_sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx, mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np, bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos, omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef, pssm_bias=pssm_bias, pssm_multi=args.pssm_multi, pssm_log_odds_flag=bool(args.pssm_log_odds_flag), pssm_log_odds_mask=pssm_log_odds_mask, pssm_bias_flag=bool(args.pssm_bias_flag), tied_pos=tied_pos_list_of_lists_list[0], tied_beta=tied_beta, bias_by_res=bias_by_res_all)
# Compute scores
S_sample = sample_dict["S"]
log_probs = model(X, S_sample, mask, chain_M*chain_M_pos, residue_idx, chain_encoding_all, randn_2, use_input_decoding_order=True, decoding_order=sample_dict["decoding_order"])
mask_for_loss = mask*chain_M*chain_M_pos
scores = _scores(S_sample, log_probs, mask_for_loss)
scores = scores.cpu().data.numpy()
global_scores = _scores(S_sample, log_probs, mask) #score the whole structure-sequence
global_scores = global_scores.cpu().data.numpy()
all_probs_list.append(sample_dict["probs"].cpu().data.numpy())
all_log_probs_list.append(log_probs.cpu().data.numpy())
S_sample_list.append(S_sample.cpu().data.numpy())
for b_ix in range(BATCH_COPIES):
masked_chain_length_list = masked_chain_length_list_list[b_ix]
masked_list = masked_list_list[b_ix]
seq_recovery_rate = torch.sum(torch.sum(torch.nn.functional.one_hot(S[b_ix], 21)*torch.nn.functional.one_hot(S_sample[b_ix], 21),axis=-1)*mask_for_loss[b_ix])/torch.sum(mask_for_loss[b_ix])
seq = _S_to_seq(S_sample[b_ix], chain_M[b_ix])
score = scores[b_ix]
score_list.append(score)
global_score = global_scores[b_ix]
global_score_list.append(global_score)
native_seq = _S_to_seq(S[b_ix], chain_M[b_ix])
if b_ix == 0 and j==0 and temp==temperatures[0]:
start = 0
end = 0
list_of_AAs = []
for mask_l in masked_chain_length_list:
end += mask_l
list_of_AAs.append(native_seq[start:end])
start = end
native_seq = "".join(list(np.array(list_of_AAs)[np.argsort(masked_list)]))
l0 = 0
for mc_length in list(np.array(masked_chain_length_list)[np.argsort(masked_list)])[:-1]:
l0 += mc_length
native_seq = native_seq[:l0] + '/' + native_seq[l0:]
l0 += 1
sorted_masked_chain_letters = np.argsort(masked_list_list[0])
print_masked_chains = [masked_list_list[0][i] for i in sorted_masked_chain_letters]
sorted_visible_chain_letters = np.argsort(visible_list_list[0])
print_visible_chains = [visible_list_list[0][i] for i in sorted_visible_chain_letters]
native_score_print = np.format_float_positional(np.float32(native_score.mean()), unique=False, precision=4)
global_native_score_print = np.format_float_positional(np.float32(global_native_score.mean()), unique=False, precision=4)
script_dir = os.path.dirname(os.path.realpath(__file__))
try:
commit_str = subprocess.check_output(f'git --git-dir {script_dir}/.git rev-parse HEAD', shell=True).decode().strip()
except subprocess.CalledProcessError:
commit_str = 'unknown'
if args.ca_only:
print_model_name = 'CA_model_name'
else:
print_model_name = 'model_name'
f.write('>{}, score={}, global_score={}, fixed_chains={}, designed_chains={}, {}={}, git_hash={}, seed={}\n{}\n'.format(name_, native_score_print, global_native_score_print, print_visible_chains, print_masked_chains, print_model_name, args.model_name, commit_str, seed, native_seq)) #write the native sequence
start = 0
end = 0
list_of_AAs = []
for mask_l in masked_chain_length_list:
end += mask_l
list_of_AAs.append(seq[start:end])
start = end
seq = "".join(list(np.array(list_of_AAs)[np.argsort(masked_list)]))
l0 = 0
for mc_length in list(np.array(masked_chain_length_list)[np.argsort(masked_list)])[:-1]:
l0 += mc_length
seq = seq[:l0] + '/' + seq[l0:]
l0 += 1
score_print = np.format_float_positional(np.float32(score), unique=False, precision=4)
global_score_print = np.format_float_positional(np.float32(global_score), unique=False, precision=4)
seq_rec_print = np.format_float_positional(np.float32(seq_recovery_rate.detach().cpu().numpy()), unique=False, precision=4)
sample_number = j*BATCH_COPIES+b_ix+1
f.write('>T={}, sample={}, score={}, global_score={}, seq_recovery={}\n{}\n'.format(temp,sample_number,score_print,global_score_print,seq_rec_print,seq)) #write generated sequence
if args.save_score:
np.savez(score_file, score=np.array(score_list, np.float32), global_score=np.array(global_score_list, np.float32))
if args.save_probs:
all_probs_concat = np.concatenate(all_probs_list)
all_log_probs_concat = np.concatenate(all_log_probs_list)
S_sample_concat = np.concatenate(S_sample_list)
np.savez(probs_file, probs=np.array(all_probs_concat, np.float32), log_probs=np.array(all_log_probs_concat, np.float32), S=np.array(S_sample_concat, np.int32), mask=mask_for_loss.cpu().data.numpy(), chain_order=chain_list_list)
t1 = time.time()
dt = round(float(t1-t0), 4)
num_seqs = len(temperatures)*NUM_BATCHES*BATCH_COPIES
total_length = X.shape[1]
print(f'{num_seqs} sequences of length {total_length} generated in {dt} seconds')
if __name__ == "__main__":
argparser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
argparser.add_argument("--ca_only", action="store_true", default=False, help="Parse CA-only structures and use CA-only models (default: false)")
argparser.add_argument("--path_to_model_weights", type=str, default="", help="Path to model weights folder;")
argparser.add_argument("--model_name", type=str, default="v_48_020", help="ProteinMPNN model name: v_48_002, v_48_010, v_48_020, v_48_030; v_48_010=version with 48 edges 0.10A noise")
argparser.add_argument("--seed", type=int, default=0, help="If set to 0 then a random seed will be picked;")
argparser.add_argument("--save_score", type=int, default=0, help="0 for False, 1 for True; save score=-log_prob to npy files")
argparser.add_argument("--save_probs", type=int, default=0, help="0 for False, 1 for True; save MPNN predicted probabilites per position")
argparser.add_argument("--score_only", type=int, default=0, help="0 for False, 1 for True; score input backbone-sequence pairs")
argparser.add_argument("--conditional_probs_only", type=int, default=0, help="0 for False, 1 for True; output conditional probabilities p(s_i given the rest of the sequence and backbone)")
argparser.add_argument("--conditional_probs_only_backbone", type=int, default=0, help="0 for False, 1 for True; if true output conditional probabilities p(s_i given backbone)")
argparser.add_argument("--unconditional_probs_only", type=int, default=0, help="0 for False, 1 for True; output unconditional probabilities p(s_i given backbone) in one forward pass")
argparser.add_argument("--backbone_noise", type=float, default=0.00, help="Standard deviation of Gaussian noise to add to backbone atoms")
argparser.add_argument("--num_seq_per_target", type=int, default=1, help="Number of sequences to generate per target")
argparser.add_argument("--batch_size", type=int, default=1, help="Batch size; can set higher for titan, quadro GPUs, reduce this if running out of GPU memory")
argparser.add_argument("--max_length", type=int, default=200000, help="Max sequence length")
argparser.add_argument("--sampling_temp", type=str, default="0.1", help="A string of temperatures, 0.2 0.25 0.5. Sampling temperature for amino acids. Suggested values 0.1, 0.15, 0.2, 0.25, 0.3. Higher values will lead to more diversity.")
argparser.add_argument("--out_folder", type=str, help="Path to a folder to output sequences, e.g. /home/out/")
argparser.add_argument("--pdb_path", type=str, default='', help="Path to a single PDB to be designed")
argparser.add_argument("--pdb_path_chains", type=str, default='', help="Define which chains need to be designed for a single PDB ")
argparser.add_argument("--jsonl_path", type=str, help="Path to a folder with parsed pdb into jsonl")
argparser.add_argument("--chain_id_jsonl",type=str, default='', help="Path to a dictionary specifying which chains need to be designed and which ones are fixed, if not specied all chains will be designed.")
argparser.add_argument("--fixed_positions_jsonl", type=str, default='', help="Path to a dictionary with fixed positions")
argparser.add_argument("--omit_AAs", type=list, default='X', help="Specify which amino acids should be omitted in the generated sequence, e.g. 'AC' would omit alanine and cystine.")
argparser.add_argument("--bias_AA_jsonl", type=str, default='', help="Path to a dictionary which specifies AA composion bias if neededi, e.g. {A: -1.1, F: 0.7} would make A less likely and F more likely.")
argparser.add_argument("--bias_by_res_jsonl", default='', help="Path to dictionary with per position bias.")
argparser.add_argument("--omit_AA_jsonl", type=str, default='', help="Path to a dictionary which specifies which amino acids need to be omited from design at specific chain indices")
argparser.add_argument("--pssm_jsonl", type=str, default='', help="Path to a dictionary with pssm")
argparser.add_argument("--pssm_multi", type=float, default=0.0, help="A value between [0.0, 1.0], 0.0 means do not use pssm, 1.0 ignore MPNN predictions")
argparser.add_argument("--pssm_threshold", type=float, default=0.0, help="A value between -inf + inf to restric per position AAs")
argparser.add_argument("--pssm_log_odds_flag", type=int, default=0, help="0 for False, 1 for True")
argparser.add_argument("--pssm_bias_flag", type=int, default=0, help="0 for False, 1 for True")
argparser.add_argument("--tied_positions_jsonl", type=str, default='', help="Path to a dictionary with tied positions")
args = argparser.parse_args()
main(args)