-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtest.py
148 lines (128 loc) · 5.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
import os,sys
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from dataset import CubDataset, CubTextDataset
from model import resnet50
from retrieval import *
def arg_parse():
parser = argparse.ArgumentParser(description='PyTorch HSE Deployment')
parser.add_argument('--gpu', default=2, type=int, help='GPU nums to use')
parser.add_argument('--workers', default=2, type=int, metavar='N', help='number of data loading workers')
parser.add_argument('--batch_size', default=25, type=int,metavar='N', help='mini-batch size')
parser.add_argument('--data_path', default='./dataset/', type=str, required=True, help='path to dataset')
parser.add_argument('--snapshot', default='./model/rankingloss/model.pkl', type=str, required=True, help='path to latest checkpoint')
parser.add_argument('--feature', default='./feature', type=str, required=True, help='path to feature')
parser.add_argument('--crop_size', default=448, type=int, help='crop size')
parser.add_argument('--scale_size', default=512, type=int, help='the size of the rescale image')
args = parser.parse_args()
return args
def print_args(args):
print ("==========================================")
print ("========== CONFIG =============")
print ("==========================================")
for arg,content in args.__dict__.items():
print("{}:{}".format(arg,content))
print ("\n")
def main():
args = arg_parse()
print_args(args)
print("==> Creating dataloader...")
data_dir = args.data_path
test_list1 = './list/image/test.txt'
test_loader1 = get_test_set(data_dir, test_list1, args)
test_list2 = './list/video/test.txt'
test_loader2 = get_test_set(data_dir, test_list2, args)
test_list3 = './list/audio/test.txt'
test_loader3 = get_test_set(data_dir, test_list3, args)
test_list4 = './list/text/test.txt'
test_loader4 = get_text_set(data_dir, test_list4, args, 'test')
out_feature_dir1 = os.path.join(args.feature, 'image')
out_feature_dir2 = os.path.join(args.feature, 'video')
out_feature_dir3 = os.path.join(args.feature, 'audio')
out_feature_dir4 = os.path.join(args.feature, 'text')
mkdir(out_feature_dir1)
mkdir(out_feature_dir2)
mkdir(out_feature_dir3)
mkdir(out_feature_dir4)
print("==> Loading the modelwork ...")
model = resnet50(num_classes=200)
model = model.cuda()
'''
if args.gpu is not None:
model = nn.DataParallel(model, device_ids=range(args.gpu))
model = model.cuda()
cudnn.benchmark = True
'''
if args.snapshot:
if os.path.isfile(args.snapshot):
print("==> loading checkpoint '{}'".format(args.snapshot))
checkpoint = torch.load(args.snapshot)
model.load_state_dict(checkpoint)
print("==> loaded checkpoint '{}'".format(args.snapshot))
else:
print("==> no checkpoint found at '{}'".format(args.snapshot))
exit()
model.eval()
#model = model.module
print("Image Features ...")
img = extra(model, test_loader1, out_feature_dir1, args, flag='i')
print("Video Features ...")
vid = extra(model, test_loader2, out_feature_dir2, args, flag='v')
print("Audio Features ...")
aud = extra(model, test_loader3, out_feature_dir3, args, flag='a')
print("Text Features ...")
txt = extra(model, test_loader4, out_feature_dir4, args, flag='t')
compute_mAP(img, vid, aud, txt)
def mkdir(out_feature_dir):
if not os.path.exists(out_feature_dir):
os.makedirs(out_feature_dir)
def extra(model, test_loader, out_feature_dir, args, flag):
size = args.batch_size
num = 0
if(flag == 'v'):
size = 1
f = np.zeros((len(test_loader),200))
else:
f = np.zeros((len(test_loader)*size,200))
for i, (input, target) in enumerate(test_loader):
target = target.cuda(async=True)
with torch.no_grad():
input_var = torch.autograd.Variable(input).cuda()
if(flag == 't'):
output = model.forward_txt(input_var)
else:
output = model.forward_share(input_var)
if(flag == 'v'):
output = torch.mean(output,0).reshape(1,200)#video frame average
output = F.softmax(output, dim=1).detach().cpu().numpy()
num += output.shape[0]
if(i == len(test_loader)-1):
f[i*size:num,:] = output
else:
f[i*size:(i+1)*size,:] = output
np.savetxt(out_feature_dir + '/features_te.txt', f[:num,:])
return out_feature_dir + '/features_te.txt'
def get_test_set(data_dir,test_list,args):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
crop_size = args.crop_size
scale_size = args.scale_size
test_data_transform = transforms.Compose([
transforms.Resize((scale_size,scale_size)),
transforms.CenterCrop(crop_size),
transforms.ToTensor(),
normalize,
])
test_set = CubDataset(data_dir, test_list, test_data_transform)
test_loader = DataLoader(dataset=test_set, num_workers=args.workers, batch_size=args.batch_size, shuffle=False)
return test_loader
def get_text_set(data_dir, test_list, args, split):
data_set = CubTextDataset(data_dir, test_list, split)
data_loader = DataLoader(dataset=data_set, num_workers=args.workers, batch_size=args.batch_size, shuffle=False)
return data_loader
if __name__=="__main__":
main()