-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaverage_predictions.py
79 lines (75 loc) · 3 KB
/
average_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!/usr/bin/env python
"""
Script to combine predictions from different csvs to
slightly improve the log loss score. Will only work
if the models being combined all perform quite well.
"""
import os
import argparse
import neukrill_net.utils
import numpy as np
import json
def combine_csvs(csv_paths, weights=None, verbose=False):
"""
Takes two or more submission csv names and combines them by averaging the
predictions in each. Returns this array of combined predictions.
"""
# check if we're using weights
if weights:
# check weights sum to 1
assert sum(weights) > 0.99999 and sum(weights) < 0.99999
else:
# make uniform weights
weights = 1./len(csv_paths)
# load each csv as an array, filling empty 3d array
predictions = np.zeros((len(csv_paths),130400,121))
for i,cpath in enumerate(csv_paths):
# unfortunately, have to check the csv name is correct
if cpath.split(".")[-1] != "gz":
cpath = cpath + ".gz"
if verbose:
print("Loading {0}...".format(cpath))
# have to enforce str otherwise loadtxt breaks (doesn't like unicode)
predictions[i,:] = np.loadtxt(str(cpath), skiprows=1,
usecols=range(1,122), delimiter=",")
# average the arrays along the first axis
if verbose:
print("Averaging predictions...")
# apply weights and sum
for i in range(len(csv_paths)):
predictions[i,:] = weights[i]*predictions[i,:]
predictions = np.sum(predictions, axis=0)
return predictions
if __name__ == "__main__":
# make a parser
parser = argparse.ArgumentParser(description='Script to combine predictions'
' from different csvs to slightly improve the log loss score. Will'
' only work if the models being combined all perform quite well.')
# run settings to combine
parser.add_argument('run_settings', metavar='run_settings', type=str,
nargs='+', default=os.path.join("run_settings","default.json"),
help="Paths to run settings json files.")
# output file path
parser.add_argument('-f', nargs='?', help='Output csv file name.',
type=str)
# add verbose option
parser.add_argument('-v', action="store_true", help="Run verbose.")
args = parser.parse_args()
# load the settings
settings = neukrill_net.utils.Settings('settings.json')
# get the csv paths
csv_paths = []
for rspath in args.run_settings:
# load the run settings
with open(rspath) as f:
rs = json.load(f)
csv_paths.append(rs["submissions abspath"])
# pass the csv paths to the combiner to combine
predictions = combine_csvs(csv_paths, verbose=args.v)
# get the right filenames
names = [os.path.basename(fpath) for fpath in settings.image_fnames['test']]
if args.v:
print("Writing new csv to {0}".format(args.f))
# write the new csv to output file
neukrill_net.utils.write_predictions(args.f, predictions,
names, settings.classes)