I am doing conformer-transducer with multilingual ASR. Why does val loss produce NaN? #11311
Unanswered
SEOLJINYOUNG
asked this question in
Q&A
Replies: 1 comment
-
I'm not sure if this is the issue, but in my case, changing the precision to 32 or bf16 allows the loss curve to converge properly. Also, your learning rate seems a bit high. |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
Hello. I am doing multilingual ASR in English and Korean by referring to the tutorial.
Multilingual ASR
In this tutorial, the base model uses the stt_enes_contextnet_large pre-trained model,
In my case I use stt_en_conformer_transducer_small.
My problem is that it seems to be learning, but val loss returns NaN.
In the validation stage, the prediction comes out like this.
[train stage]
![image](https://private-user-images.githubusercontent.com/171211641/387023913-265ef749-9b48-450e-a629-2618fcb293fa.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk1NzUxOTMsIm5iZiI6MTczOTU3NDg5MywicGF0aCI6Ii8xNzEyMTE2NDEvMzg3MDIzOTEzLTI2NWVmNzQ5LTliNDgtNDUwZS1hNjI5LTI2MThmY2IyOTNmYS5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjE0JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxNFQyMzE0NTNaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT1jMGE2MjQyZGVjZWVjYTBlZjQ3ZTYwZDFjMDFkMWFhMDY0ZDY5ZWJkNWNkM2Y4OGNiMjkyMTYwOWM0ODk0MjRmJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.MY7S_HPdcxHffVYqvaMwBe1Zn0P5iT2fs8tOln56WU4)
[valid stage]
![image](https://private-user-images.githubusercontent.com/171211641/387023822-73723860-c485-493b-91c2-96458a777e1c.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk1NzUxOTMsIm5iZiI6MTczOTU3NDg5MywicGF0aCI6Ii8xNzEyMTE2NDEvMzg3MDIzODIyLTczNzIzODYwLWM0ODUtNDkzYi05MWMyLTk2NDU4YTc3N2UxYy5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjE0JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxNFQyMzE0NTNaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT03MGZhY2I0YTU4NmViODI2NDRiYWE0Y2MzYmY0ZjE1NGU2ODM4ZDgwMzlhOGI5M2RjMTRkZjA4MmQ0NWRlZWE1JlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.ZY1hmTnTb7zgalQo4eJ8R3v6qucqwztMzhRSGd3Kc_8)
I would be grateful if you could give me some advice regarding this.
This is the overall code I ran.
[code]
The dataset has the following sizes:
![image](https://private-user-images.githubusercontent.com/171211641/387023029-d29498bd-c212-466c-817b-838841666390.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk1NzUxOTMsIm5iZiI6MTczOTU3NDg5MywicGF0aCI6Ii8xNzEyMTE2NDEvMzg3MDIzMDI5LWQyOTQ5OGJkLWMyMTItNDY2Yy04MTdiLTgzODg0MTY2NjM5MC5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjE0JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxNFQyMzE0NTNaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT03ODUzODgwOTQ3NjZiYWQ5YjM5N2ViZDAwNjYwMTExY2ViYWZhZjJmYzYxZDk0MjQzYWM2NmJlNzRkMzRiN2NhJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.znNH2G6H962pIR0w6aq7wyCvbyvejCyl0gf3vapDBdc)
I stopped learning in progress.
![image](https://private-user-images.githubusercontent.com/171211641/387023253-83e00d42-9064-409a-8d40-7e3e9f734c91.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk1NzUxOTMsIm5iZiI6MTczOTU3NDg5MywicGF0aCI6Ii8xNzEyMTE2NDEvMzg3MDIzMjUzLTgzZTAwZDQyLTkwNjQtNDA5YS04ZDQwLTdlM2U5ZjczNGM5MS5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjE0JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxNFQyMzE0NTNaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT05N2ZlMzIzY2M5YjRlM2U3ZGZkMmE4ODI2YWZkZTZlZWVhNTM3NWI5YmQwYjA3ZjY1OGVhZmNiN2FlNzUxMWUyJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.yTse83VR9EnHuNLykClW6Lq85XxoR9jDabbVKmN3h-E)
[train_loss]
[val_loss]
![image](https://private-user-images.githubusercontent.com/171211641/387023456-36f47773-3eed-40c0-ac11-2a441d4cb764.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk1NzUxOTMsIm5iZiI6MTczOTU3NDg5MywicGF0aCI6Ii8xNzEyMTE2NDEvMzg3MDIzNDU2LTM2ZjQ3NzczLTNlZWQtNDBjMC1hYzExLTJhNDQxZDRjYjc2NC5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjE0JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxNFQyMzE0NTNaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT01ZWUyNjg5YmNhODdlZjk1N2UwYzY1MDc0OTE3YzY3MTZjYmY3MDAwYzYzYmQ5NDAyYWRlMzkzNDBjMTU4MjNhJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.N0kQeKoXN1ow-hTtZJNLtH40j99jqNeBBnK3zMk9Jzk)
Beta Was this translation helpful? Give feedback.
All reactions