-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathinpaint.py
73 lines (52 loc) · 2.37 KB
/
inpaint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import cv2
import torch
import numpy as np
from imageio import imread, imwrite
import os
from test import main_worker
from PIL import Image
from Projection import Equirec2Cube
from Projection import Cube2Equirec
import subprocess
USE_GPU = True
device = 'cuda:0'
size = 512
def inpaint(mask, rgb, in_model, upsampler):
print
e2c = Equirec2Cube(512, 512).to(device)
c2e = Cube2Equirec(1024, 512).to(device)
#最原始的全景mask
ori_mask = (mask == 255.0)
ori_rgb = rgb.copy()
mask = mask.astype(np.float32) / 255.0
batch_mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2)
batch_img = ori_rgb.astype(np.float32) / 255.0
batch_img = torch.FloatTensor(batch_img).permute(2, 0, 1)[None, ...].to(device)
batch_mask = torch.FloatTensor(batch_mask).permute(2, 0, 1)[None, ...].to(device)
cubemap_img = e2c(batch_img)
cubemap_mask = e2c(batch_mask)
cubemap_img = cubemap_img.permute(0, 2, 3, 1).cpu().numpy()
cubemap_mask = cubemap_mask.permute(0, 2, 3, 1).cpu().numpy()
inpaint_images = torch.zeros(6, 3, size, size, dtype=torch.float32).to(device)
for i in range(6):
cubemap_mask[i] = (cubemap_mask[i] > 0).astype(int) #mask = 1
face_mask = (cubemap_mask[i] * 255.0).astype(np.uint8)
true_mask = (face_mask == 255)
cubemap_img[i][true_mask] = 1.0
face_img = (cubemap_img[i] * 255.0).astype(np.uint8)
#Image.fromarray(face_mask).save(os.path.join('input', f"image{i + 1}_mask001.png"))
#Image.fromarray(face_img).save(os.path.join('input', f"image{i + 1}.png"))
#AOT-GAN
inpainted = main_worker(face_mask[:,:,0], face_img, in_model)
# You can optionally use a super-resolution algorithm to enhance the visual quality.
#inpainted, _ = upsampler.enhance(inpainted, outscale=2)
new_inpaint = torch.FloatTensor(inpainted.astype(np.float32)/255.0).permute(2, 0, 1)[None, ...].cuda()
inpaint_images[i] = new_inpaint
#Image.fromarray(inpainted).save(os.path.join('output', f"inpaint_{i + 1}.png"))
equirec_img = c2e(inpaint_images)
equirec_img = equirec_img.permute(0, 2, 3, 1).cpu().numpy()
equirec_img = (equirec_img * 255).astype(np.uint8)
equirec_img = equirec_img.squeeze(0)
#equirec_img, _ = upsampler.enhance(equirec_img, outscale=2)
ori_rgb[ori_mask] = equirec_img[ori_mask]
return ori_rgb