-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNetwork.go
466 lines (414 loc) · 12.1 KB
/
Network.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
package main
import (
"encoding/json"
"errors"
"fmt"
"io/ioutil"
"log"
"math"
"math/rand"
"sync"
)
func main() {
trainingData := initTrainingImages()
trainingLabels := initTrainingLabels()
testData := initTestImages()
testLabels := initTestLabels()
layerSizes := make([]int, 0)
layerSizes = append(layerSizes, 188)
//layerSizes = append(layerSizes, 20*26)
layerSizes = append(layerSizes, 90)
layerSizes = append(layerSizes, 44)
//layerSizes = append(layerSizes, 8)
var input []float32 = trainingData[len(trainingData)-1]
n := initNetwork(layerSizes)
for i := 0; i < 4980; i++ {
learn(&n, trainingData, trainingLabels, 1, 4, len(trainingData)/4)
if(i%10==0){
fmt.Println("Training Cycle", i)
validate(n, trainingData, trainingLabels, 8)
validate(n, testData, testLabels, 8)
fmt.Println()
}
}
validate(n, testData, testLabels, 2)
for i := 0; i < 120; i++ {
var tmp []float32 = ask(&n,input);
var min int = 0;
for j := 1; j < len(tmp); j++ {
if tmp[j]<tmp[min] { min = j }
}
var num int = 44
for j := 0; j < num; j++ {
input[12+j] = input[12+num+j]
}
for j := 0; j < num; j++ {
input[12+num+j] = input[12+2*num+j]
}
for j := 0; j < num; j++ {
input[12+2*num+j] = input[12+3*num+j]
}
input[12+3*num+min] = 1;
fmt.Println(min)
//fmt.Println(input)
for j := 0; j < 12; j++ {
if input[j]==1 {
input[j] = 0
if j==11 {
input[0] = 1;
} else {
input[j+1] = 1;
}
break
}
}
}
}
type netStruct struct {
layerSizes []int
weights [][][]float32
biases [][]float32
completedCycles int
}
func initNetwork(layerSizes []int) netStruct {
var n netStruct
numLayers := len(layerSizes) - 1
if numLayers < 1 {
err := errors.New("Network needs at least two layers to function.")
log.Fatal(err)
}
n.layerSizes = layerSizes
n.weights = make([][][]float32, numLayers)
n.biases = make([][]float32, numLayers)
for i := 1; i < len(layerSizes); i++ {
n.weights[i-1] = make([][]float32, layerSizes[i])
for j := 0; j < len(n.weights[i-1]); j++ {
n.weights[i-1][j] = make([]float32, layerSizes[i-1])
}
n.biases[i-1] = make([]float32, layerSizes[i])
}
for i := 0; i < len(n.weights); i++ {
for j := 0; j < len(n.weights[i]); j++ {
for k := 0; k < len(n.weights[i][j]); k++ {
n.weights[i][j][k] = rand.Float32() - 0.5
}
n.biases[i][j] = rand.Float32() - 0.5
}
}
return n
}
func squash(summation float32, bias float32) float32 {
return 1.0 / float32((1.0 + math.Exp(float64((summation-bias)*-1.0))))
}
func fromBoolArray(array []bool) []float32 {
output := make([]float32, len(array))
for i := 0; i < len(array); i++ {
if array[i] {
output[i] = 0.9
} else {
output[i] = 0.1
}
}
return output
}
func ask(network *netStruct, inputs []float32) []float32 {
if len(inputs) != network.layerSizes[0] {
err := errors.New("Network needs at least two layers to function.")
log.Fatal(err)
}
previousLayerOutputs := inputs
for i := 0; i < len(network.weights); i++ {
layerOutputs := make([]float32, len(network.weights[i]))
for j := 0; j < len(layerOutputs); j++ {
summation := float32(0)
for k := 0; k < len(network.weights[i][j]); k++ {
summation += network.weights[i][j][k] * previousLayerOutputs[k]
}
layerOutputs[j] = squash(summation, network.biases[i][j])
}
previousLayerOutputs = layerOutputs
}
return previousLayerOutputs
}
func isCorrect(networkOutput []float32, label []bool) bool {
index := 0
for i := 0; i < len(networkOutput); i++ {
if networkOutput[i] > networkOutput[index] {
index = i
}
}
return label[index]
}
func differenceArrays(networkOutput []float32, label []float32) float64 {
total := float64(0)
for i := 0; i < len(networkOutput); i++ {
total += math.Pow(float64(networkOutput[i]-label[i]), 2)
}
return math.Sqrt(total)
}
func learn(network *netStruct, trainingData [][]float32, trainingLabels [][]bool, learningRate float32, numThreads int, rangePerThread int) {
rangeStart := 0
for rangeStart < len(trainingData)-1 {
runnables := make([]*trainingRunnable, 0)
var wg sync.WaitGroup
for i := 0; i < numThreads; i++ {
if rangeStart == len(trainingData)-1 {
wg.Wait()
continue
}
tmp := rangeStart + rangePerThread
var rangeEnd int
if tmp > len(trainingData) {
rangeEnd = len(trainingData) - 1
} else {
rangeEnd = rangeStart + rangePerThread
}
wg.Add(1)
thread := createTrainingRunnable(trainingData, trainingLabels, rangeStart, rangeEnd)
runnables = append(runnables, &thread)
go runTraining(&thread, network, &wg)
rangeStart = rangeEnd
}
wg.Wait()
var weightGradients [][][]float32
var biasGradients [][]float32
for i := 0; i < len(runnables); i++ {
runnableGradients := runnables[i].weightGradients
runnableBiasGradients := runnables[i].biasGradients
if weightGradients == nil || biasGradients == nil {
weightGradients = runnableGradients
biasGradients = runnableBiasGradients
} else {
for i := 0; i < len(weightGradients); i++ {
for j := 0; j < len(weightGradients[i]); j++ {
for k := 0; k < len(weightGradients[i][j]); k++ {
weightGradients[i][j][k] += runnableGradients[i][j][k]
}
biasGradients[i][j] += runnableBiasGradients[i][j]
}
}
}
}
if weightGradients == nil || biasGradients == nil {
err := errors.New("Gradient matrices were null.")
log.Fatal(err)
}
updateInterval := numThreads * rangePerThread
for i := 0; i < len(network.layerSizes)-1; i++ {
for j := 0; j < network.layerSizes[i+1]; j++ {
for k := 0; k < network.layerSizes[i]; k++ {
network.weights[i][j][k] -= learningRate * weightGradients[i][j][k] / float32(updateInterval)
}
weightGradients[i][j] = make([]float32, network.layerSizes[i])
network.biases[i][j] -= learningRate * biasGradients[i][j] / float32(updateInterval)
}
biasGradients[i] = make([]float32, network.layerSizes[i+1])
}
}
network.completedCycles++
}
func validate(network netStruct, testData [][]float32, testLabels [][]bool, numThreads int) {
fmt.Println("Starting validation (", network.completedCycles, "training cycles completed).")
numCorrect := 0
error := float64(0)
runnables := make([]*validationRunnable, 0)
var wg sync.WaitGroup
rangeStart := 0
for i := 0; i < numThreads; i++ {
var rangeEnd int
if i == numThreads-1 {
rangeEnd = len(testData)
} else {
rangeEnd = (len(testData) / numThreads) + rangeStart
}
wg.Add(1)
thread := createValidationRunnable(testData, testLabels, rangeStart, rangeEnd)
runnables = append(runnables, &thread)
go runValidation(&thread, &network, &wg)
rangeStart = rangeEnd
}
wg.Wait()
for i := 0; i < len(runnables); i++ {
numCorrect += runnables[i].numCorrect
error += runnables[i].totalError
}
error /= float64(len(testData))
successRate := (numCorrect * 100) / len(testData)
fmt.Println(": Network chose correctly in ", numCorrect, "/ ", len(testData), "cases (", successRate, "%) with an average error of ", error, " per input.")
}
type trainingRunnable struct {
weightGradients [][][]float32
biasGradients [][]float32
trainingData [][]float32
trainingLabels [][]bool
rangeStart int
rangeEnd int
}
func createTrainingRunnable(trainingData [][]float32, trainingLabels [][]bool, rangeStart int, rangeEnd int) trainingRunnable {
var tr trainingRunnable
tr.trainingData = trainingData
tr.trainingLabels = trainingLabels
tr.rangeStart = rangeStart
tr.rangeEnd = rangeEnd
return tr
}
func runTraining(tr *trainingRunnable, network *netStruct, wg *sync.WaitGroup) {
numLayers := len(network.weights)
outputs := make([][]float32, numLayers)
errors := make([][]float32, numLayers)
var previousLayerOutputs []float32
tr.weightGradients = make([][][]float32, numLayers)
tr.biasGradients = make([][]float32, numLayers)
for x := 0; x < numLayers; x++ {
tr.weightGradients[x] = make([][]float32, network.layerSizes[x+1])
for i := 0; i < len(tr.weightGradients[x]); i++ {
tr.weightGradients[x][i] = make([]float32, network.layerSizes[x])
}
tr.biasGradients[x] = make([]float32, network.layerSizes[x+1])
}
for setnumber := tr.rangeStart; setnumber < tr.rangeEnd; setnumber++ {
input := tr.trainingData[setnumber]
label := fromBoolArray(tr.trainingLabels[setnumber])
previousLayerOutputs = input
for i := 0; i < numLayers; i++ {
currentLayerSize := network.layerSizes[i+1]
outputs[i] = make([]float32, currentLayerSize)
for j := 0; j < currentLayerSize; j++ {
summation := float32(0)
for k := 0; k < len(network.weights[i][j]); k++ {
summation += network.weights[i][j][k] * previousLayerOutputs[k]
}
outputs[i][j] = squash(summation, network.biases[i][j])
}
previousLayerOutputs = outputs[i]
}
errors[len(errors)-1] = make([]float32, network.layerSizes[len(network.layerSizes)-1])
for i := 0; i < len(errors[len(errors)-1]); i++ {
actual := outputs[len(outputs)-1][i]
error := actual - label[i]
errors[len(errors)-1][i] = error * actual * (float32(1) - actual)
}
for i := numLayers - 2; i >= 0; i-- {
errors[i] = make([]float32, network.layerSizes[i+1])
for j := 0; j < len(errors[i]); j++ {
error := float32(0)
for k := 0; k < len(errors[i+1]); k++ {
error += errors[i+1][k] * network.weights[i+1][k][j]
}
errors[i][j] = error * outputs[i][j] * (float32(1) - outputs[i][j])
}
}
previousLayerOutputs = input
for i := 0; i < numLayers; i++ {
for j := 0; j < network.layerSizes[i+1]; j++ {
for k := 0; k < len(previousLayerOutputs); k++ {
tr.weightGradients[i][j][k] += errors[i][j] * previousLayerOutputs[k]
}
tr.biasGradients[i][j] += errors[i][j]
}
previousLayerOutputs = outputs[i]
}
}
wg.Done()
}
type validationRunnable struct {
numCorrect int
totalError float64
validationData [][]float32
validationLabels [][]bool
rangeStart int
rangeEnd int
}
func createValidationRunnable(validationData [][]float32, validationLabels [][]bool, rangeStart int, rangeEnd int) validationRunnable {
var vr validationRunnable
vr.validationData = validationData
vr.validationLabels = validationLabels
vr.rangeStart = rangeStart
vr.rangeEnd = rangeEnd
return vr
}
func runValidation(vr *validationRunnable, network *netStruct, wg *sync.WaitGroup) {
for i := vr.rangeStart; i < vr.rangeEnd; i++ {
output := ask(network, vr.validationData[i])
usableLabel := fromBoolArray(vr.validationLabels[i])
if isCorrect(output, vr.validationLabels[i]) {
vr.numCorrect++
}
vr.totalError += differenceArrays(output, usableLabel)
}
wg.Done()
}
func initTrainingImages() [][]float32 {
b, err := ioutil.ReadFile("trainingdata.json")
//b, err := ioutil.ReadFile("TRAININGDATA.txt")
if err != nil {
fmt.Print(err)
}
var dat [][]float32
if err := json.Unmarshal(b, &dat); err != nil {
panic(err)
}
fmt.Println(len(dat))
return dat
}
func initTrainingLabels() [][]bool {
b, err := ioutil.ReadFile("traininglabels.json")
//b, err := ioutil.ReadFile("TRAININGLABELS.txt")
if err != nil {
fmt.Print(err)
}
var dat [][]float32
if err := json.Unmarshal(b, &dat); err != nil {
panic(err)
}
fmt.Println(len(dat))
labels := make([][]bool, len(dat))
for i := range labels {
labels[i] = make([]bool, len(dat[i]))
for j := range labels[i] {
if dat[i][j] == 1 {
labels[i][j] = true
} else {
labels[i][j] = false
}
}
}
return labels
}
func initTestImages() [][]float32 {
b, err := ioutil.ReadFile("trainingdata.json")
//b, err := ioutil.ReadFile("VALIDDATA.txt")
if err != nil {
fmt.Print(err)
}
var dat [][]float32
if err := json.Unmarshal(b, &dat); err != nil {
panic(err)
}
fmt.Println(len(dat))
return dat
}
func initTestLabels() [][]bool {
b, err := ioutil.ReadFile("traininglabels.json")
//b, err := ioutil.ReadFile("VALIDLABELS.txt")
if err != nil {
fmt.Print(err)
}
var dat [][]float32
if err := json.Unmarshal(b, &dat); err != nil {
panic(err)
}
fmt.Println(len(dat))
labels := make([][]bool, len(dat))
for i := range labels {
labels[i] = make([]bool, len(dat[i]))
for j := range labels[i] {
if dat[i][j] == 1 {
labels[i][j] = true
} else {
labels[i][j] = false
}
}
}
return labels
}