From 816f202aac5212d8612b2d9575167bfd97cef847 Mon Sep 17 00:00:00 2001
From: github-actions Hydrogen bonds\(r_{DA}\)) must be less than a specified cutoff, typically 3 Å
the donor-hydrogen-acceptor angle (\(\theta_{DHA}\)) must be greater than a specified cutoff, typically 150°
NMP: residues 30-59 (blue)
LID: residues 122-159 (yellow)
[26]:
In stand-alone use, an auxiliary reader allows you to iterate over each step in a set of auxiliary data.
@@ -460,7 +460,7 @@The ‘description’ of any or all the auxiliaries added to a trajectory can be @@ -575,7 +575,7 @@
In [45]: import matplotlib.pyplot as plt
In [46]: plt.plot(temp["Time"], temp["Temperature"])
-Out[46]: [<matplotlib.lines.Line2D at 0x7f23b3a92910>]
+Out[46]: [<matplotlib.lines.Line2D at 0x7fd022280670>]
In [47]: plt.ylabel("Temperature [K]")
Out[47]: Text(0, 0.5, 'Temperature [K]')
diff --git a/2.7.0-dev0/index.html b/2.7.0-dev0/index.html
index 4f43b01e2..b00df45a3 100644
--- a/2.7.0-dev0/index.html
+++ b/2.7.0-dev0/index.html
@@ -190,7 +190,7 @@
Welcome to MDAnalysis User Guide’s documentation!
MDAnalysis version: 2.7.0-dev0
-Last updated: Nov 21, 2023
+Last updated: Nov 24, 2023
MDAnalysis (www.mdanalysis.org) is a Python
toolkit to analyse molecular dynamics files and trajectories in many popular formats. MDAnalysis can write
most of these formats, too, together with atom selections for use in visualisation tools or other analysis programs.
diff --git a/2.7.0-dev0/reading_and_writing.html b/2.7.0-dev0/reading_and_writing.html
index 23f89d779..ae930de7f 100644
--- a/2.7.0-dev0/reading_and_writing.html
+++ b/2.7.0-dev0/reading_and_writing.html
@@ -320,13 +320,13 @@
Building trajectories in memoryIn [16]: universe.atoms.positions
Out[16]:
-array([[0.95849204, 0.7487938 , 0.9704986 ],
- [0.42354256, 0.2889326 , 0.06184179],
- [0.5241738 , 0.642687 , 0.6946113 ],
+array([[0.01341493, 0.8954516 , 0.48900408],
+ [0.0416302 , 0.81844276, 0.6713378 ],
+ [0.32844332, 0.8965664 , 0.8370764 ],
...,
- [0.7527609 , 0.1350824 , 0.80041414],
- [0.1707926 , 0.5413459 , 0.8568687 ],
- [0.0265642 , 0.16363254, 0.5556602 ]], dtype=float32)
+ [0.04501093, 0.29551986, 0.05062775],
+ [0.6661255 , 0.7034433 , 0.08090701],
+ [0.52956533, 0.7413073 , 0.81429756]], dtype=float32)
or they can be directly passed in when creating a Universe.
@@ -334,13 +334,13 @@C
O
N
O
C
CA
RA5
RA3
DC
RA
DG3
U
GUA
RU3
DA5
DA3
RU5
DC
DT
THY
ADE
RC3
DA5
A
GUA
DA3
RU5
RA3
DT5
RU
ADE
DG
RG3
DT3
RC5
URA
RC3
RU3
DC5
C
DT5
DT3
RA
DG5
DA
T
CYT
RG5
RA5
DG5
RG
DC3
RG5
DA
DT
RC5
DG
C
RC
CYT
DG3
RG3
RC
G
O3’
O5’
P
C3’
O5’
O3’
C5’
O6
N1
C8
N6
N4
C6
C5
O2
N3
N6
N2
O4
C2
N9
C6
O4
N7
N4
N1
N9
C8
C4
C5M
C2
N3
C5
N7
C1’
O4’
C3’
C4’
C4’
C2’
C1’
C3’
O4’
To mark an expected failure, use pytest.mark.xfail()
decorator:
To mark an expected failure, use pytest.mark.xfail()
decorator:
@pytest.mark.xfail
def tested_expected_failure():
assert 1 == 2
To manually fail a test, make a call to pytest.fail()
:
To manually fail a test, make a call to pytest.fail()
:
def test_open(self, tmpdir):
outfile = str(tmpdir.join('lammps-writer-test.dcd'))
try:
@@ -452,7 +452,7 @@ Failing tests
Skipping tests
-To skip tests based on a condition, use pytest.mark.skipif(condition)
decorator:
+To skip tests based on a condition, use pytest.mark.skipif(condition)
decorator:
import numpy as np
try:
from numpy import shares_memory
@@ -467,7 +467,7 @@ Skipping testsassert not np.shares_memory(original.ts.positions, copy.ts.positions)
-To skip a test if a module is not available for importing, use pytest.importorskip('module_name')
+To skip a test if a module is not available for importing, use pytest.importorskip('module_name')
def test_write_trajectory_netCDF4(self, universe, outfile):
pytest.importorskip("netCDF4")
return self._test_write_trajectory(universe, outfile)
@@ -477,7 +477,7 @@ Skipping tests
Fixtures
-Use fixtures as much as possible to reuse “resources” between test methods/functions. Pytest fixtures are functions that run before each test function that uses that fixture. A fixture is typically set up with the pytest.fixture()
decorator, over a function that returns the object you need:
+Use fixtures as much as possible to reuse “resources” between test methods/functions. Pytest fixtures are functions that run before each test function that uses that fixture. A fixture is typically set up with the pytest.fixture()
decorator, over a function that returns the object you need:
@pytest.fixture
def universe(self):
return mda.Universe(self.ref_filename)
diff --git a/dev/_downloads/899668c9e2e17d4c2fc64131d19cdebc/auxiliary-1.pdf b/dev/_downloads/899668c9e2e17d4c2fc64131d19cdebc/auxiliary-1.pdf
index d1544b2f65facafeda6fd227240a076221c3e256..f09507d2fca4be01eb9bbdf876112f436ba09fb5 100644
GIT binary patch
delta 19
acmZ4CzrufmpbDFbfw6(9$!2ktiOc{$2?dM*
delta 19
acmZ4CzrufmpbDFzfw6&^!DexliOc{#*9C?E
diff --git a/dev/examples/analysis/hydrogen_bonds/hbonds.html b/dev/examples/analysis/hydrogen_bonds/hbonds.html
index 349e37d30..1cf94294d 100644
--- a/dev/examples/analysis/hydrogen_bonds/hbonds.html
+++ b/dev/examples/analysis/hydrogen_bonds/hbonds.html
@@ -266,7 +266,7 @@ Hydrogen bonds\(r_{DA}\)) must be less than a specified cutoff, typically 3 Å
the donor-hydrogen-acceptor angle (\(\theta_{DHA}\)) must be greater than a specified cutoff, typically 150°
-![0071495ab8c44bf497b9222ecc6dbaad]()
+![2910b68d2c0d4d05b79dde26aca48e0a]()
Find water-water hydrogen bonds
diff --git a/dev/examples/constructing_universe.html b/dev/examples/constructing_universe.html
index 41f20b514..752646443 100644
--- a/dev/examples/constructing_universe.html
+++ b/dev/examples/constructing_universe.html
@@ -715,7 +715,7 @@ Adding a new segmentNMP: residues 30-59 (blue)
LID: residues 122-159 (yellow)
-![f3284674c13f481fb3bdefdeddca6b44](https://github.com/MDAnalysis/MDAnalysisTutorial/blob/master/doc/sphinx/figs/angle_defs.png?raw=true)
+![1cc00375615b413d878cc6f95e7cfcda](https://github.com/MDAnalysis/MDAnalysisTutorial/blob/master/doc/sphinx/figs/angle_defs.png?raw=true)
[26]:
diff --git a/dev/formats/auxiliary.html b/dev/formats/auxiliary.html
index eba683e3e..cc928d8a4 100644
--- a/dev/formats/auxiliary.html
+++ b/dev/formats/auxiliary.html
@@ -261,7 +261,7 @@ Reading data directlyIn [3]: aux = mda.auxiliary.core.auxreader(XVG_BZ2)
In [4]: aux
-Out[4]: <MDAnalysis.auxiliary.XVG.XVGReader at 0x7f23e7d58fd0>
+Out[4]: <MDAnalysis.auxiliary.XVG.XVGReader at 0x7fd021ce3070>
In stand-alone use, an auxiliary reader allows you to iterate over each step in a set of auxiliary data.
@@ -460,7 +460,7 @@ Recreating auxiliariesIn [30]: del aux
In [31]: mda.auxiliary.core.auxreader(**description)
-Out[31]: <MDAnalysis.auxiliary.XVG.XVGReader at 0x7f23b3eedcd0>
+Out[31]: <MDAnalysis.auxiliary.XVG.XVGReader at 0x7fd022ba1b50>
The ‘description’ of any or all the auxiliaries added to a trajectory can be
@@ -575,7 +575,7 @@
Standalone UsageIn [45]: import matplotlib.pyplot as plt
In [46]: plt.plot(temp["Time"], temp["Temperature"])
-Out[46]: [<matplotlib.lines.Line2D at 0x7f23b3a92910>]
+Out[46]: [<matplotlib.lines.Line2D at 0x7fd022280670>]
In [47]: plt.ylabel("Temperature [K]")
Out[47]: Text(0, 0.5, 'Temperature [K]')
diff --git a/dev/index.html b/dev/index.html
index 4f43b01e2..b00df45a3 100644
--- a/dev/index.html
+++ b/dev/index.html
@@ -190,7 +190,7 @@
Welcome to MDAnalysis User Guide’s documentation!
MDAnalysis version: 2.7.0-dev0
-Last updated: Nov 21, 2023
+Last updated: Nov 24, 2023
MDAnalysis (www.mdanalysis.org) is a Python
toolkit to analyse molecular dynamics files and trajectories in many popular formats. MDAnalysis can write
most of these formats, too, together with atom selections for use in visualisation tools or other analysis programs.
diff --git a/dev/reading_and_writing.html b/dev/reading_and_writing.html
index 23f89d779..ae930de7f 100644
--- a/dev/reading_and_writing.html
+++ b/dev/reading_and_writing.html
@@ -320,13 +320,13 @@
Building trajectories in memoryIn [16]: universe.atoms.positions
Out[16]:
-array([[0.95849204, 0.7487938 , 0.9704986 ],
- [0.42354256, 0.2889326 , 0.06184179],
- [0.5241738 , 0.642687 , 0.6946113 ],
+array([[0.01341493, 0.8954516 , 0.48900408],
+ [0.0416302 , 0.81844276, 0.6713378 ],
+ [0.32844332, 0.8965664 , 0.8370764 ],
...,
- [0.7527609 , 0.1350824 , 0.80041414],
- [0.1707926 , 0.5413459 , 0.8568687 ],
- [0.0265642 , 0.16363254, 0.5556602 ]], dtype=float32)
+ [0.04501093, 0.29551986, 0.05062775],
+ [0.6661255 , 0.7034433 , 0.08090701],
+ [0.52956533, 0.7413073 , 0.81429756]], dtype=float32)
or they can be directly passed in when creating a Universe.
@@ -334,13 +334,13 @@ Building trajectories in memoryIn [18]: universe2.atoms.positions
Out[18]:
-array([[0.95849204, 0.7487938 , 0.9704986 ],
- [0.42354256, 0.2889326 , 0.06184179],
- [0.5241738 , 0.642687 , 0.6946113 ],
+array([[0.01341493, 0.8954516 , 0.48900408],
+ [0.0416302 , 0.81844276, 0.6713378 ],
+ [0.32844332, 0.8965664 , 0.8370764 ],
...,
- [0.7527609 , 0.1350824 , 0.80041414],
- [0.1707926 , 0.5413459 , 0.8568687 ],
- [0.0265642 , 0.16363254, 0.5556602 ]], dtype=float32)
+ [0.04501093, 0.29551986, 0.05062775],
+ [0.6661255 , 0.7034433 , 0.08090701],
+ [0.52956533, 0.7413073 , 0.81429756]], dtype=float32)
diff --git a/dev/searchindex.js b/dev/searchindex.js
index 3fc79fdd6..0c212c24c 100644
--- a/dev/searchindex.js
+++ b/dev/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["advanced_topology", "atomgroup", "contributing", "contributing_code", "contributing_docs", "datasets", "examples/README", "examples/analysis/README", "examples/analysis/alignment_and_rms/README", "examples/analysis/alignment_and_rms/aligning_structure_to_another", "examples/analysis/alignment_and_rms/aligning_trajectory", "examples/analysis/alignment_and_rms/aligning_trajectory_to_frame", "examples/analysis/alignment_and_rms/pairwise_rmsd", "examples/analysis/alignment_and_rms/rmsd", "examples/analysis/alignment_and_rms/rmsf", "examples/analysis/custom_parallel_analysis", "examples/analysis/custom_trajectory_analysis", "examples/analysis/distances_and_contacts/README", "examples/analysis/distances_and_contacts/contacts_custom", "examples/analysis/distances_and_contacts/contacts_native_fraction", "examples/analysis/distances_and_contacts/contacts_q1q2", "examples/analysis/distances_and_contacts/contacts_within_cutoff", "examples/analysis/distances_and_contacts/distances_between_atomgroups", "examples/analysis/distances_and_contacts/distances_between_selections", "examples/analysis/distances_and_contacts/distances_within_selection", "examples/analysis/hydrogen_bonds/README", "examples/analysis/hydrogen_bonds/hbonds", "examples/analysis/hydrogen_bonds/hbonds-lifetimes", "examples/analysis/hydrogen_bonds/hbonds-selections", "examples/analysis/polymers_and_membranes/README", "examples/analysis/polymers_and_membranes/hole2", "examples/analysis/polymers_and_membranes/polymer", "examples/analysis/reduced_dimensions/README", "examples/analysis/reduced_dimensions/diffusion_map", "examples/analysis/reduced_dimensions/pca", "examples/analysis/structure/README", "examples/analysis/structure/average_rdf", "examples/analysis/structure/dihedrals", "examples/analysis/structure/elastic_network", "examples/analysis/structure/helanal", "examples/analysis/structure/site_specific_rdf", "examples/analysis/trajectory_similarity/README", "examples/analysis/trajectory_similarity/clustering_ensemble_similarity", "examples/analysis/trajectory_similarity/convergence", "examples/analysis/trajectory_similarity/dimension_reduction_ensemble_similarity", "examples/analysis/trajectory_similarity/harmonic_ensemble_similarity", "examples/analysis/trajectory_similarity/psa", "examples/analysis/volumetric/README", "examples/analysis/volumetric/density_analysis", "examples/analysis/volumetric/linear_density", "examples/constructing_universe", "examples/other/README", "examples/other/parmed_sim", "examples/quickstart", "examples/transformations/README", "examples/transformations/center_protein_in_box", "faq", "formats/auxiliary", "formats/coordinates", "formats/format_reference", "formats/guessing", "formats/index", "formats/reference/chemfiles", "formats/reference/config", "formats/reference/coor", "formats/reference/crd", "formats/reference/data", "formats/reference/dcd", "formats/reference/dcd_lammps", "formats/reference/dms", "formats/reference/gms", "formats/reference/gro", "formats/reference/gsd", "formats/reference/in", "formats/reference/inpcrd", "formats/reference/itp", "formats/reference/lammpsdump", "formats/reference/mmtf", "formats/reference/mol2", "formats/reference/ncdf", "formats/reference/parmed", "formats/reference/pdb", "formats/reference/pdbqt", "formats/reference/pqr", "formats/reference/psf", "formats/reference/tng", "formats/reference/top", "formats/reference/tpr", "formats/reference/trj", "formats/reference/trr", "formats/reference/trz", "formats/reference/txyz", "formats/reference/xml", "formats/reference/xpdb", "formats/reference/xtc", "formats/reference/xyz", "formats/selection_exporters", "formats/topology", "groups_of_atoms", "index", "installation", "module_imports", "preparing_releases_and_hotfixes", "reading_and_writing", "references", "releases", "selections", "standard_selections", "testing", "topology_system", "trajectories/slicing_trajectories", "trajectories/trajectories", "trajectories/transformations", "units", "universe"], "filenames": ["advanced_topology.rst", "atomgroup.rst", "contributing.rst", "contributing_code.rst", "contributing_docs.rst", "datasets.rst", "examples/README.rst", "examples/analysis/README.rst", "examples/analysis/alignment_and_rms/README.rst", "examples/analysis/alignment_and_rms/aligning_structure_to_another.ipynb", "examples/analysis/alignment_and_rms/aligning_trajectory.ipynb", "examples/analysis/alignment_and_rms/aligning_trajectory_to_frame.ipynb", "examples/analysis/alignment_and_rms/pairwise_rmsd.ipynb", "examples/analysis/alignment_and_rms/rmsd.ipynb", "examples/analysis/alignment_and_rms/rmsf.ipynb", "examples/analysis/custom_parallel_analysis.ipynb", "examples/analysis/custom_trajectory_analysis.ipynb", "examples/analysis/distances_and_contacts/README.rst", "examples/analysis/distances_and_contacts/contacts_custom.ipynb", "examples/analysis/distances_and_contacts/contacts_native_fraction.ipynb", "examples/analysis/distances_and_contacts/contacts_q1q2.ipynb", "examples/analysis/distances_and_contacts/contacts_within_cutoff.ipynb", "examples/analysis/distances_and_contacts/distances_between_atomgroups.ipynb", "examples/analysis/distances_and_contacts/distances_between_selections.ipynb", "examples/analysis/distances_and_contacts/distances_within_selection.ipynb", "examples/analysis/hydrogen_bonds/README.rst", "examples/analysis/hydrogen_bonds/hbonds.ipynb", "examples/analysis/hydrogen_bonds/hbonds-lifetimes.ipynb", "examples/analysis/hydrogen_bonds/hbonds-selections.ipynb", "examples/analysis/polymers_and_membranes/README.rst", "examples/analysis/polymers_and_membranes/hole2.ipynb", "examples/analysis/polymers_and_membranes/polymer.ipynb", "examples/analysis/reduced_dimensions/README.rst", "examples/analysis/reduced_dimensions/diffusion_map.ipynb", "examples/analysis/reduced_dimensions/pca.ipynb", "examples/analysis/structure/README.rst", "examples/analysis/structure/average_rdf.ipynb", "examples/analysis/structure/dihedrals.ipynb", "examples/analysis/structure/elastic_network.ipynb", "examples/analysis/structure/helanal.ipynb", "examples/analysis/structure/site_specific_rdf.ipynb", "examples/analysis/trajectory_similarity/README.rst", "examples/analysis/trajectory_similarity/clustering_ensemble_similarity.ipynb", "examples/analysis/trajectory_similarity/convergence.ipynb", "examples/analysis/trajectory_similarity/dimension_reduction_ensemble_similarity.ipynb", "examples/analysis/trajectory_similarity/harmonic_ensemble_similarity.ipynb", "examples/analysis/trajectory_similarity/psa.ipynb", "examples/analysis/volumetric/README.rst", "examples/analysis/volumetric/density_analysis.ipynb", "examples/analysis/volumetric/linear_density.ipynb", "examples/constructing_universe.ipynb", "examples/other/README.rst", "examples/other/parmed_sim.ipynb", "examples/quickstart.ipynb", "examples/transformations/README.rst", "examples/transformations/center_protein_in_box.ipynb", "faq.rst", "formats/auxiliary.rst", "formats/coordinates.rst", "formats/format_reference.rst", "formats/guessing.rst", "formats/index.rst", "formats/reference/chemfiles.rst", "formats/reference/config.rst", "formats/reference/coor.rst", "formats/reference/crd.rst", "formats/reference/data.rst", "formats/reference/dcd.rst", "formats/reference/dcd_lammps.rst", "formats/reference/dms.rst", "formats/reference/gms.rst", "formats/reference/gro.rst", "formats/reference/gsd.rst", "formats/reference/in.rst", "formats/reference/inpcrd.rst", "formats/reference/itp.rst", "formats/reference/lammpsdump.rst", "formats/reference/mmtf.rst", "formats/reference/mol2.rst", "formats/reference/ncdf.rst", "formats/reference/parmed.rst", "formats/reference/pdb.rst", "formats/reference/pdbqt.rst", "formats/reference/pqr.rst", "formats/reference/psf.rst", "formats/reference/tng.rst", "formats/reference/top.rst", "formats/reference/tpr.rst", "formats/reference/trj.rst", "formats/reference/trr.rst", "formats/reference/trz.rst", "formats/reference/txyz.rst", "formats/reference/xml.rst", "formats/reference/xpdb.rst", "formats/reference/xtc.rst", "formats/reference/xyz.rst", "formats/selection_exporters.rst", "formats/topology.rst", "groups_of_atoms.rst", "index.rst", "installation.rst", "module_imports.rst", "preparing_releases_and_hotfixes.rst", "reading_and_writing.rst", "references.rst", "releases.md", "selections.rst", "standard_selections.rst", "testing.rst", "topology_system.rst", "trajectories/slicing_trajectories.rst", "trajectories/trajectories.rst", "trajectories/transformations.rst", "units.rst", "universe.rst"], "titles": ["Advanced topology concepts", "AtomGroup", "Contributing to MDAnalysis", "Contributing to the main codebase", "Contributing to the user guide", "Example data", "Examples", "Analysis", "Alignments and RMS fitting", "Aligning a structure to another", "Aligning a trajectory to a reference", "Aligning a trajectory to itself", "Calculating the pairwise RMSD of a trajectory", "Calculating the root mean square deviation of atomic structures", "Calculating the root mean square fluctuation over a trajectory", "Parallelizing analysis", "Writing your own trajectory analysis", "Distances and contacts", "Write your own native contacts analysis method", "Fraction of native contacts over a trajectory", "Q1 vs Q2 contact analysis", "Contact analysis: number of contacts within a cutoff", "Atom-wise distances between matching AtomGroups", "All distances between two selections", "All distances within a selection", "Hydrogen Bond Analysis", "Calculating hydrogen bonds: the basics", "Calculating hydrogen bond lifetimes", "Calculating hydrogen bonds: advanced selections", "Polymers and membranes", "Analysing pore dimensions with HOLE2", "Determining the persistence length of a polymer", "Dimension reduction", "Non-linear dimension reduction to diffusion maps", "Principal component analysis of a trajectory", "Structure", "Average radial distribution functions", "Protein dihedral angle analysis", "Elastic network analysis", "Helix analysis", "Calculating the RDF atom-to-atom", "Trajectory similarity", "Calculating the Clustering Ensemble Similarity between ensembles", "Evaluating convergence", "Calculating the Dimension Reduction Ensemble Similarity between ensembles", "Calculating the Harmonic Ensemble Similarity between ensembles", "Comparing the geometric similarity of trajectories", "Volumetric analyses", "Calculating the solvent density around a protein", "Computing mass and charge density on each axis", "Constructing, modifying, and adding to a Universe", "Other", "Using ParmEd with MDAnalysis and OpenMM to simulate a selection of atoms", "Quick start guide", "Transformations", "Centering a trajectory in the box", "Frequently asked questions", "Auxiliary files", "Coordinates", "Format reference", "Guessing", "Format overview", "chemfiles (chemfiles Trajectory or file)", "CONFIG (DL_Poly Config)", "COOR, NAMBDIN (NAMD binary restart files)", "CRD (CHARMM CARD files)", "DATA (LAMMPS)", "DCD (CHARMM, NAMD, or LAMMPS trajectory)", "DCD (Flexible LAMMPS trajectory)", "DMS (Desmond Molecular Structure files)", "GMS (Gamess trajectory)", "GRO (GROMACS structure file)", "GSD (HOOMD GSD file)", "IN, FHIAIMS (FHI-aims input files)", "INPCRD, RESTRT (AMBER restart files)", "ITP (GROMACS portable topology files)", "LAMMPSDUMP (LAMMPS ascii dump file)", "MMTF (Macromolecular Transmission Format)", "MOL2 (Tripos structure)", "NCDF, NC (AMBER NetCDF trajectory)", "ParmEd (ParmEd Structure)", "PDB, ENT (Standard PDB file)", "PDBQT (Autodock structure)", "PQR file (PDB2PQR / APBS)", "PSF (CHARMM, NAMD, or XPLOR protein structure file)", "TNG (Trajectory Next Generation)", "TOP, PRMTOP, PARM7 (AMBER topology)", "TPR (GROMACS run topology files)", "TRJ, MDCRD, CRDBOX (AMBER ASCII trajectory)", "TRR (GROMACS lossless trajectory file)", "TRZ (IBIsCO and YASP trajectory)", "TXYZ, ARC (Tinker)", "XML (HOOMD)", "XPDB (Extended PDB file)", "XTC (GROMACS compressed trajectory file)", "XYZ trajectory", "Selection exporters", "Topology", "Groups of atoms", "Welcome to MDAnalysis User Guide\u2019s documentation!", "Installation", "Module imports in MDAnalysis", "Preparing a release", "Reading and writing files", "References", "MDAnalysis Release Notes", "Atom selection language", "Standard residues in MDAnalysis selections", "Tests in MDAnalysis", "The topology system", "Slicing trajectories", "Trajectories", "On-the-fly transformations", "Units and constants", "Universe"], "terms": {"To": [0, 2, 3, 4, 10, 12, 16, 19, 22, 26, 27, 28, 30, 42, 43, 44, 46, 48, 50, 53, 57, 66, 86, 100, 102, 105, 108], "add": [0, 1, 3, 4, 5, 14, 15, 16, 22, 23, 24, 50, 60, 99, 100, 102, 105, 106, 108, 109, 114], "us": [0, 1, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 26, 27, 31, 33, 34, 36, 37, 39, 40, 41, 42, 44, 45, 46, 48, 50, 51, 53, 55, 58, 60, 61, 67, 72, 78, 79, 80, 81, 82, 83, 85, 86, 89, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 105, 106, 109, 110, 111, 112, 113, 114], "add_residu": [0, 105, 114], "add_seg": [0, 50, 105, 114], "method": [0, 3, 6, 7, 14, 15, 17, 19, 20, 21, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 39, 45, 48, 50, 57, 60, 96, 98, 99, 101, 103, 104, 105, 106, 108], "u": [0, 1, 5, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40, 43, 48, 49, 50, 52, 53, 55, 57, 61, 66, 70, 88, 96, 98, 103, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], "mda": [0, 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 66, 93, 96, 98, 102, 103, 105, 106, 108, 109, 110, 111, 112, 114], "psf": [0, 5, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 26, 27, 28, 33, 34, 38, 39, 42, 43, 44, 45, 46, 53, 59, 61, 82, 97, 103, 105, 106, 108, 109, 110, 111], "dcd": [0, 3, 5, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 26, 27, 28, 33, 34, 38, 39, 42, 43, 44, 45, 46, 49, 53, 58, 59, 61, 103, 105, 106, 108, 110, 111], "segmentgroup": [0, 1, 53, 98, 105, 109], "1": [0, 1, 3, 4, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 60, 61, 66, 69, 75, 78, 81, 82, 83, 84, 87, 88, 89, 91, 93, 94, 95, 96, 98, 102, 103, 104, 106, 108, 109, 110, 111, 112, 113, 114], "segid": [0, 1, 10, 26, 50, 53, 61, 65, 81, 82, 83, 105, 106, 109], "arrai": [0, 1, 7, 12, 13, 15, 16, 17, 18, 19, 21, 24, 26, 27, 30, 33, 34, 36, 37, 39, 40, 42, 43, 44, 46, 48, 49, 50, 53, 57, 98, 103, 105, 108, 109, 112], "4ake": [0, 13, 50, 53, 83, 106], "dtype": [0, 26, 30, 48, 49, 50, 98, 103, 109], "object": [0, 1, 3, 16, 20, 26, 37, 48, 50, 52, 53, 57, 58, 61, 62, 98, 105, 106, 108, 114], "newseg": 0, "x": [0, 3, 4, 12, 13, 14, 15, 16, 18, 19, 20, 21, 30, 31, 34, 44, 48, 49, 50, 53, 56, 57, 66, 67, 81, 82, 83, 87, 95, 104, 105, 106, 112], "atom": [0, 3, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 26, 27, 30, 32, 33, 34, 35, 38, 39, 41, 42, 44, 46, 48, 49, 50, 51, 55, 60, 61, 65, 66, 69, 70, 71, 75, 76, 78, 82, 83, 84, 87, 88, 89, 91, 92, 95, 96, 99, 105, 107, 108, 109, 110, 111, 112, 114], "atomgroup": [0, 6, 7, 9, 15, 16, 17, 19, 26, 31, 37, 39, 40, 50, 52, 55, 60, 71, 98, 103, 105, 106, 112], "0": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 111, 112, 113, 114], "assign": [0, 19, 24, 50, 53, 57, 60, 61, 66, 95, 105, 109, 110, 114], "last": [0, 3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 89, 99, 108, 109], "100": [0, 1, 14, 19, 26, 27, 30, 42, 44, 52, 53, 57, 87, 113, 114], "from": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 55, 56, 57, 58, 60, 61, 63, 64, 65, 66, 67, 68, 69, 72, 75, 76, 78, 79, 81, 82, 83, 84, 87, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 113], "thi": [0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 56, 57, 60, 61, 62, 66, 68, 69, 71, 75, 79, 81, 82, 83, 84, 85, 87, 88, 89, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 111, 114], "new": [0, 1, 2, 4, 9, 15, 16, 18, 19, 30, 34, 48, 53, 57, 66, 67, 87, 100, 101, 102, 103, 104, 109, 110, 111, 112, 114], "1600": 0, "anoth": [0, 1, 4, 6, 7, 8, 10, 11, 12, 14, 19, 34, 50, 53, 96, 98, 106, 108], "exampl": [0, 1, 3, 4, 7, 8, 9, 11, 13, 15, 16, 19, 26, 27, 28, 30, 34, 37, 39, 40, 42, 43, 48, 50, 52, 53, 57, 60, 66, 78, 83, 87, 96, 98, 100, 101, 102, 103, 104, 106, 108, 109, 110, 111, 113, 114], "i": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 56, 57, 60, 61, 65, 66, 67, 68, 69, 70, 71, 73, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 114], "creat": [0, 2, 9, 10, 12, 15, 19, 20, 24, 26, 30, 34, 36, 39, 49, 53, 57, 60, 71, 75, 78, 80, 81, 83, 84, 89, 94, 99, 100, 103, 105, 106, 108, 110, 112], "protein": [0, 6, 7, 9, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 34, 35, 38, 39, 42, 44, 45, 47, 52, 53, 57, 59, 98, 104, 106, 110, 111, 112, 114], "domain": [0, 7, 13, 14, 17, 19, 22, 23, 50], "In": [0, 1, 3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 18, 19, 26, 27, 30, 33, 34, 36, 38, 42, 44, 45, 46, 48, 50, 52, 53, 57, 61, 66, 67, 79, 88, 89, 93, 96, 98, 99, 100, 101, 104, 105, 106, 108, 109, 110, 111, 112, 114], "mdanalysi": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 53, 55, 56, 57, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 100, 102, 103, 104, 106, 109, 110, 111, 112, 114], "gromac": [0, 16, 48, 50, 57, 58, 59, 61, 85, 96, 97, 98, 103, 105], "onli": [0, 2, 3, 4, 10, 12, 13, 15, 16, 26, 27, 28, 30, 31, 34, 36, 37, 48, 49, 50, 53, 55, 56, 57, 66, 70, 72, 78, 79, 83, 84, 87, 88, 91, 94, 95, 98, 99, 100, 101, 102, 103, 105, 106, 108, 109, 110, 111, 112, 114], "relev": [0, 4, 7, 26, 32, 50, 102], "some": [0, 2, 3, 9, 10, 14, 15, 22, 23, 24, 26, 27, 30, 34, 45, 46, 50, 52, 53, 55, 60, 66, 100, 102, 103, 105, 108], "analysi": [0, 1, 3, 4, 8, 9, 10, 11, 12, 13, 14, 17, 22, 23, 24, 27, 28, 30, 31, 32, 33, 35, 36, 40, 41, 43, 45, 46, 48, 49, 52, 55, 57, 85, 98, 99, 100, 103, 104, 105, 109, 110, 113, 114], "A": [0, 1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 56, 57, 60, 61, 63, 67, 71, 72, 75, 81, 82, 83, 84, 87, 88, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 113, 114], "group": [0, 13, 22, 30, 31, 34, 40, 42, 43, 49, 50, 83, 84, 96, 103, 105, 106, 108, 109, 112, 114], "consid": [0, 2, 3, 7, 13, 15, 16, 27, 32, 34, 38, 41, 42, 98, 100, 101, 106, 108, 114], "defin": [0, 3, 4, 15, 20, 22, 24, 26, 30, 31, 36, 37, 40, 42, 44, 46, 50, 53, 55, 57, 61, 67, 82, 86, 95, 96, 98, 105, 106, 108, 109], "moleculetyp": [0, 109], "section": [0, 3, 4, 9, 10, 11, 12, 13, 14, 19, 33, 53, 55, 57, 66, 81, 84, 100, 104, 105, 108], "ar": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 60, 61, 65, 66, 67, 68, 69, 70, 72, 73, 75, 76, 77, 78, 79, 81, 82, 83, 84, 87, 88, 89, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114], "file": [0, 2, 3, 4, 5, 50, 53, 56, 58, 59, 60, 61, 63, 66, 67, 68, 70, 77, 78, 79, 80, 82, 85, 86, 91, 92, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 109, 111], "e": [0, 1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 60, 67, 80, 82, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 112, 113, 114], "tpr": [0, 26, 36, 40, 48, 55, 59, 61, 71, 75, 97, 98, 103, 105, 106, 109, 112, 114], "extens": [0, 3, 4, 18, 30, 53, 57, 61, 79, 81, 88, 96, 99, 102, 103, 105], "unlik": [0, 1, 3, 7, 10, 19, 30, 32, 33, 38, 68, 69, 72, 75, 82, 106], "fragment": [0, 31, 48, 49, 50, 55, 105, 106, 108], "thei": [0, 3, 4, 7, 10, 12, 15, 16, 19, 20, 27, 32, 34, 37, 38, 42, 46, 48, 50, 57, 60, 61, 66, 79, 89, 92, 98, 100, 101, 102, 103, 105, 107, 108, 109, 111], "access": [0, 1, 3, 5, 16, 42, 50, 53, 56, 89, 94, 98, 99, 105, 106, 107, 109, 114], "directli": [0, 1, 4, 16, 18, 19, 20, 23, 30, 37, 38, 44, 48, 52, 53, 99, 102, 103, 106, 109, 111, 112], "traceback": [0, 108], "most": [0, 1, 3, 7, 10, 14, 15, 16, 26, 27, 32, 34, 39, 40, 41, 53, 60, 68, 69, 83, 87, 99, 100, 103, 105, 106, 108, 109, 114], "recent": [0, 3, 67, 87, 102, 108, 109], "call": [0, 1, 3, 4, 7, 12, 15, 16, 19, 28, 30, 32, 34, 37, 50, 53, 68, 98, 99, 105, 106, 108, 109, 112], "stdin": 0, "line": [0, 3, 12, 13, 26, 27, 30, 33, 43, 48, 49, 57, 81, 83, 91, 95, 96, 98, 100, 105, 108, 114], "modul": [0, 1, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 25, 30, 38, 39, 41, 42, 43, 44, 45, 46, 53, 55, 79, 100, 105, 109, 112], "core": [0, 2, 3, 13, 14, 15, 22, 23, 42, 44, 50, 53, 57, 83, 100, 102, 103, 105, 109, 112], "py": [0, 3, 4, 5, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 37, 38, 39, 40, 42, 43, 44, 45, 49, 53, 101, 102, 104, 105, 108], "2278": 0, "__getattr__": 0, "cl": [0, 30], "self": [0, 3, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 38, 39, 42, 43, 44, 45, 49, 108], "__class__": 0, "__name__": 0, "attr": 0, "attributeerror": 0, "ha": [0, 2, 3, 7, 9, 10, 11, 13, 14, 15, 16, 18, 19, 22, 23, 24, 28, 29, 30, 34, 36, 40, 42, 43, 44, 45, 46, 48, 50, 52, 53, 55, 70, 87, 96, 98, 100, 102, 103, 105, 106, 108, 109, 111, 114], "attribut": [0, 1, 3, 14, 15, 26, 30, 39, 40, 53, 56, 60, 65, 66, 77, 81, 83, 87, 99, 103, 105, 106, 108], "howev": [0, 1, 3, 7, 9, 10, 13, 14, 15, 16, 19, 26, 27, 30, 31, 32, 34, 39, 44, 48, 50, 52, 53, 55, 57, 67, 69, 71, 72, 84, 87, 89, 96, 98, 100, 101, 102, 103, 105, 108, 109, 114], "order": [0, 3, 7, 12, 13, 15, 16, 19, 26, 31, 32, 33, 34, 37, 42, 43, 44, 48, 52, 53, 57, 61, 66, 67, 82, 90, 98, 100, 101, 102, 103, 105, 109, 110, 111, 112, 114], "molnum": [0, 61, 87, 97, 108, 109], "name": [0, 3, 4, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 42, 43, 44, 46, 48, 50, 53, 57, 60, 61, 65, 67, 70, 78, 81, 82, 83, 86, 87, 92, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107, 108, 109, 114], "moltyp": [0, 61, 87, 97, 106, 109], "each": [0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 14, 15, 16, 21, 22, 23, 26, 27, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 44, 45, 46, 47, 48, 50, 53, 55, 57, 60, 61, 66, 96, 98, 99, 101, 102, 103, 105, 108, 109, 111, 112, 113, 114], "11086": 0, "11087": 0, "11088": 0, "akeco": 0, "na": [0, 1, 30, 105], "2": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 111, 112, 113, 114], "7": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], "dev0": [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 111, 112, 113, 114], "univers": [1, 3, 5, 6, 7, 9, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 56, 60, 61, 62, 66, 68, 71, 77, 80, 81, 82, 88, 89, 93, 94, 95, 96, 98, 99, 103, 105, 106, 108, 110, 111, 112], "contain": [1, 3, 4, 7, 8, 12, 14, 15, 17, 26, 30, 34, 37, 39, 40, 41, 42, 44, 46, 48, 50, 53, 55, 57, 66, 72, 81, 84, 87, 88, 89, 91, 92, 93, 96, 98, 101, 102, 103, 104, 105, 106, 108, 109, 111, 112, 114], "all": [1, 2, 3, 4, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 26, 30, 33, 34, 37, 38, 44, 46, 48, 50, 53, 57, 66, 81, 83, 92, 95, 98, 99, 100, 101, 102, 103, 105, 106, 108, 109, 112, 114], "particl": [1, 9, 13, 14, 34, 36, 40, 50, 52, 53, 72, 105], "molecular": [1, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 58, 59, 61, 66, 80, 85, 97, 99, 104, 114], "system": [1, 2, 3, 4, 14, 15, 22, 26, 30, 36, 40, 50, 53, 57, 61, 80, 81, 83, 105, 108, 114], "regardless": [1, 3, 53, 113], "whether": [1, 3, 9, 10, 14, 16, 34, 50, 114], "realli": [1, 13, 15, 108], "g": [1, 3, 4, 5, 7, 14, 15, 19, 20, 26, 30, 32, 33, 34, 37, 53, 57, 67, 80, 99, 100, 101, 102, 103, 104, 106, 107, 108, 109, 112, 113, 114], "mai": [1, 3, 4, 7, 9, 12, 14, 15, 16, 18, 19, 26, 27, 28, 30, 32, 33, 34, 36, 38, 42, 43, 44, 48, 50, 53, 57, 93, 100, 101, 102, 103, 105, 111], "unit": [1, 5, 26, 48, 49, 50, 52, 53, 63, 66, 67, 68, 76, 79, 81, 82, 88, 101, 103, 105, 106, 108, 112], "coars": [1, 9, 19, 20, 53, 104], "grain": [1, 9, 19, 20, 53, 104], "bead": [1, 9, 53], "": [1, 2, 3, 4, 9, 10, 13, 16, 19, 26, 27, 30, 33, 34, 37, 39, 40, 42, 44, 45, 48, 50, 52, 53, 55, 56, 57, 60, 67, 81, 87, 96, 98, 101, 102, 103, 104, 105, 109, 111, 113, 114], "master": [1, 3, 109, 114], "The": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 56, 57, 60, 61, 62, 66, 67, 68, 69, 70, 72, 73, 77, 78, 79, 80, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 113, 114], "probabl": [1, 7, 15, 38, 41, 42, 44, 53, 88], "import": [1, 3, 5, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 56, 57, 60, 78, 83, 87, 93, 96, 98, 102, 103, 105, 106, 109, 110, 111, 112, 114], "virtual": [1, 3, 4, 93, 98], "everyth": [1, 3, 48, 53, 98, 101, 102], "can": [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 78, 79, 80, 81, 83, 84, 89, 91, 92, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114], "through": [1, 2, 3, 7, 12, 14, 15, 32, 41, 49, 53, 57, 98, 103, 105, 106, 109, 111, 114], "instanc": [1, 36, 50, 53, 57, 78, 106, 114], "typic": [1, 3, 7, 8, 13, 14, 26, 50, 52, 53, 96, 98, 99, 108, 109, 111, 112, 114], "select_atom": [1, 9, 11, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 26, 31, 34, 36, 37, 40, 48, 50, 52, 53, 55, 96, 98, 103, 105, 106, 110, 111, 112, 114], "manipul": [1, 53, 80, 99], "test": [1, 2, 5, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 70, 93, 96, 98, 102, 103, 106, 109, 110, 111, 112, 114], "datafil": [1, 5, 9, 10, 11, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 93, 96, 98, 101, 103, 106, 108, 109, 110, 111, 112, 114], "pdb": [1, 9, 10, 13, 14, 22, 23, 24, 34, 37, 46, 50, 52, 53, 57, 58, 59, 61, 77, 78, 83, 96, 97, 98, 103, 105, 108, 109, 114], "3": [1, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 60, 78, 81, 82, 83, 84, 87, 93, 94, 95, 96, 98, 103, 104, 106, 108, 109, 110, 111, 112, 113, 114], "4": [1, 3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 60, 78, 82, 83, 87, 88, 93, 96, 98, 100, 102, 103, 104, 106, 108, 109, 110, 111, 112, 114], "resnam": [1, 18, 19, 21, 26, 27, 28, 36, 37, 40, 48, 50, 53, 55, 61, 65, 72, 81, 82, 86, 87, 96, 97, 98, 105, 106, 109, 112], "arg": [1, 15, 18, 19, 21, 27, 28, 53, 83, 98, 106, 107, 109], "out": [1, 3, 4, 9, 10, 11, 12, 14, 19, 30, 34, 39, 48, 50, 52, 55, 57, 61, 70, 78, 93, 98, 102, 103, 105, 106, 109, 110, 111, 113, 114], "312": [1, 98, 104, 108], "see": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 18, 19, 20, 21, 22, 26, 27, 28, 30, 32, 33, 34, 37, 38, 40, 42, 43, 44, 46, 48, 50, 52, 53, 55, 56, 57, 60, 61, 63, 66, 67, 69, 76, 81, 84, 87, 94, 96, 98, 99, 100, 101, 102, 103, 105, 106, 108, 109, 112, 114], "more": [1, 2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 26, 27, 30, 33, 34, 38, 39, 40, 42, 43, 44, 46, 48, 49, 50, 53, 56, 57, 60, 61, 65, 69, 87, 98, 101, 103, 105, 106, 108, 109, 112, 114], "inform": [1, 3, 4, 7, 10, 12, 14, 15, 16, 19, 22, 26, 28, 30, 32, 33, 34, 37, 40, 42, 43, 44, 46, 50, 52, 56, 57, 60, 62, 63, 66, 69, 70, 71, 72, 80, 81, 82, 84, 87, 88, 94, 95, 98, 101, 103, 105, 106, 108, 111, 112, 114], "like": [1, 3, 4, 5, 13, 16, 19, 26, 30, 34, 39, 40, 43, 48, 53, 55, 57, 60, 83, 100, 106, 108], "list": [1, 2, 3, 5, 13, 15, 16, 19, 26, 30, 38, 39, 40, 42, 43, 44, 46, 48, 50, 53, 57, 61, 65, 67, 82, 87, 96, 99, 100, 102, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114], "5": [1, 3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 67, 71, 78, 82, 87, 93, 98, 102, 103, 104, 106, 108, 109, 110, 111, 112, 114], "print": [1, 5, 9, 10, 11, 13, 14, 15, 19, 23, 26, 27, 28, 30, 31, 34, 36, 37, 39, 40, 42, 43, 44, 45, 46, 49, 50, 53, 57, 101, 103, 108, 109, 110, 111, 114], "n": [1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 83, 95, 96, 98, 104, 105, 106, 107, 113], "type": [1, 3, 26, 42, 50, 52, 53, 58, 61, 65, 66, 72, 80, 81, 82, 83, 84, 85, 86, 87, 91, 92, 96, 97, 98, 104, 105, 106, 109, 113], "met": [1, 53, 83, 107, 109], "resid": [1, 13, 14, 23, 24, 26, 27, 36, 40, 46, 50, 53, 61, 65, 66, 69, 72, 75, 81, 82, 87, 89, 98, 105, 106, 109], "altloc": [1, 14, 61, 81, 82, 97, 106, 109], "return": [1, 3, 4, 9, 10, 13, 15, 16, 18, 19, 20, 21, 22, 24, 27, 30, 33, 34, 37, 40, 42, 44, 50, 53, 57, 98, 102, 105, 106, 108, 110, 111, 112], "below": [1, 2, 3, 5, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 26, 27, 28, 30, 33, 34, 36, 37, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 61, 98, 103, 106, 107, 108, 109, 112, 113, 114], "code": [1, 2, 4, 5, 6, 7, 11, 13, 14, 15, 16, 30, 36, 48, 50, 57, 67, 78, 81, 82, 84, 93, 98, 99, 102, 103, 104, 105, 106, 108, 109, 112, 114], "everi": [1, 3, 4, 10, 14, 15, 16, 24, 27, 30, 31, 34, 37, 39, 42, 44, 48, 50, 52, 53, 57, 60, 61, 98, 103, 105, 106, 108, 109, 111, 114], "second": [1, 10, 12, 18, 19, 21, 40, 44, 53, 113], "element": [1, 42, 50, 53, 60, 61, 65, 66, 70, 81, 82, 86, 97, 105, 109, 114], "first": [1, 3, 4, 7, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 26, 27, 30, 31, 32, 33, 34, 36, 37, 38, 40, 42, 44, 45, 46, 48, 49, 50, 53, 55, 57, 61, 69, 72, 81, 83, 89, 94, 98, 100, 101, 105, 106, 108, 110, 111, 114], "6th": [1, 106], "correspond": [1, 3, 12, 13, 14, 16, 24, 26, 27, 40, 55, 71, 98, 108, 109], "indic": [1, 3, 12, 13, 14, 19, 24, 26, 27, 30, 33, 34, 38, 40, 43, 50, 53, 81, 82, 84, 87, 91, 96, 101, 105, 106, 108, 109, 110], "6": [1, 3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 66, 69, 78, 81, 82, 83, 84, 87, 91, 93, 98, 102, 103, 104, 106, 109, 110, 111, 112, 114], "ag": [1, 10, 13, 40, 96, 98, 103], "also": [1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 26, 27, 28, 30, 32, 34, 37, 39, 40, 41, 42, 44, 48, 53, 55, 57, 61, 62, 81, 82, 87, 89, 98, 100, 101, 102, 103, 105, 106, 108, 109, 110, 111, 112, 113, 114], "support": [1, 3, 13, 19, 30, 46, 53, 66, 71, 72, 82, 84, 85, 88, 100, 103, 105, 106, 109, 111, 114], "fanci": [1, 53, 110], "pass": [1, 3, 4, 13, 16, 18, 19, 22, 23, 24, 26, 28, 30, 31, 34, 36, 37, 39, 42, 43, 44, 45, 49, 50, 53, 55, 60, 61, 62, 66, 80, 81, 93, 95, 96, 100, 102, 103, 105, 106, 108, 110, 112, 114], "ndarrai": [1, 53, 110], "8": [1, 4, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 22, 23, 24, 26, 27, 28, 30, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 46, 48, 49, 50, 52, 53, 55, 57, 78, 81, 82, 87, 98, 103, 105, 106, 109, 110, 111, 112, 114], "10": [1, 3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 71, 78, 82, 83, 87, 98, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114], "9": [1, 3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 24, 26, 27, 28, 30, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 78, 81, 82, 84, 87, 98, 102, 103, 105, 106, 108, 109, 110, 111, 112, 114], "47680": 1, "boolean": [1, 53, 108, 110], "allow": [1, 2, 3, 10, 13, 14, 19, 27, 28, 30, 36, 37, 40, 42, 43, 44, 52, 53, 56, 57, 60, 96, 99, 100, 103, 105, 106, 108, 110, 114], "you": [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 26, 27, 30, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 60, 61, 62, 64, 67, 78, 79, 80, 89, 96, 98, 99, 100, 101, 102, 103, 104, 106, 108, 109, 110, 111, 112, 114], "true": [1, 3, 9, 10, 11, 12, 13, 14, 16, 26, 27, 28, 30, 34, 37, 38, 40, 42, 44, 45, 46, 48, 50, 52, 53, 55, 66, 68, 89, 94, 103, 105, 106, 108, 110, 114], "fals": [1, 4, 9, 11, 14, 19, 20, 26, 27, 30, 40, 44, 46, 48, 50, 53, 57, 78, 103, 105, 106, 108, 109, 110, 114], "valu": [1, 3, 7, 8, 11, 12, 13, 14, 15, 19, 24, 26, 27, 30, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 53, 57, 60, 65, 66, 67, 76, 81, 82, 83, 89, 92, 105, 106, 108, 110, 114], "must": [1, 2, 3, 4, 11, 12, 13, 16, 18, 22, 23, 26, 27, 30, 31, 34, 42, 43, 46, 48, 50, 53, 60, 66, 79, 83, 84, 100, 101, 108, 109, 112, 114], "same": [1, 3, 4, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 24, 26, 28, 30, 31, 33, 34, 36, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 53, 55, 60, 67, 93, 95, 96, 98, 102, 103, 105, 106, 109, 110, 114], "length": [1, 3, 6, 7, 12, 13, 22, 24, 27, 29, 39, 40, 42, 44, 45, 46, 48, 50, 52, 53, 63, 66, 67, 68, 71, 79, 88, 99, 104, 105, 110, 111], "origin": [1, 3, 4, 7, 9, 13, 14, 23, 27, 32, 33, 34, 39, 50, 53, 55, 57, 67, 98, 102, 106, 108, 110, 113], "condit": [1, 15, 105, 106, 108, 110, 112], "arr": 1, "11": [1, 3, 9, 10, 13, 14, 15, 16, 19, 24, 26, 27, 28, 30, 33, 34, 36, 37, 38, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 78, 81, 82, 83, 87, 98, 103, 104, 105, 106, 109, 110, 112, 113, 114], "len": [1, 12, 23, 24, 30, 33, 34, 36, 37, 38, 40, 42, 44, 45, 46, 48, 50, 53, 57, 98, 103, 108, 109, 111], "12": [1, 3, 9, 10, 13, 14, 15, 16, 19, 26, 27, 30, 33, 34, 36, 37, 40, 42, 43, 44, 46, 48, 49, 50, 52, 53, 55, 57, 78, 82, 86, 98, 103, 104, 106, 109, 110, 111, 112, 113, 114], "13": [1, 9, 10, 13, 14, 15, 16, 19, 26, 27, 30, 34, 36, 37, 40, 42, 43, 44, 48, 49, 50, 52, 53, 55, 57, 81, 82, 98, 103, 106, 109, 110, 112, 114], "number": [1, 3, 4, 6, 7, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 27, 30, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 52, 53, 57, 60, 65, 69, 71, 72, 75, 81, 82, 83, 84, 85, 87, 89, 91, 92, 93, 96, 103, 105, 106, 108, 109, 114], "wai": [1, 3, 4, 7, 10, 12, 13, 14, 15, 16, 18, 19, 26, 27, 30, 33, 34, 48, 52, 53, 79, 98, 99, 103, 105, 106, 108, 109, 111, 114], "compar": [1, 6, 7, 9, 10, 11, 12, 14, 15, 17, 19, 22, 32, 34, 40, 41, 42, 44, 45, 108], "one": [1, 2, 3, 4, 10, 11, 12, 13, 15, 19, 27, 28, 30, 31, 39, 46, 50, 53, 56, 57, 83, 87, 88, 91, 92, 96, 98, 99, 100, 103, 104, 105, 106, 108, 109, 114], "concaten": [1, 15, 53, 103, 106, 114], "subtract": [1, 13, 84], "union": [1, 106], "differ": [1, 3, 4, 7, 9, 10, 12, 13, 15, 16, 19, 26, 28, 34, 36, 38, 40, 41, 45, 46, 48, 50, 53, 55, 60, 66, 67, 70, 71, 75, 82, 87, 91, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 106, 112, 114], "achiev": [1, 15], "similar": [1, 3, 4, 6, 12, 15, 19, 23, 24, 30, 32, 33, 34, 37, 38, 53, 73, 82, 83, 87, 92, 93, 98, 104], "outcom": [1, 105], "kei": [1, 2, 30, 38, 39, 49, 53, 57, 98, 99, 114], "preserv": [1, 4, 19, 66, 105], "ani": [1, 2, 3, 4, 11, 15, 16, 18, 27, 28, 30, 31, 37, 42, 43, 44, 46, 49, 50, 53, 56, 57, 61, 67, 89, 98, 99, 100, 101, 102, 103, 104, 105, 106, 108, 112], "duplic": [1, 30, 53, 103, 106], "where": [1, 4, 5, 7, 9, 14, 15, 16, 19, 20, 21, 22, 27, 31, 32, 33, 36, 37, 38, 40, 43, 44, 46, 48, 50, 53, 57, 60, 61, 66, 71, 89, 98, 100, 102, 105, 106, 108, 109], "its": [1, 2, 3, 4, 7, 9, 13, 15, 18, 19, 20, 22, 30, 32, 33, 44, 46, 49, 52, 53, 98, 99, 100, 101, 103, 106, 108, 109, 111, 112], "topologi": [1, 5, 14, 15, 26, 28, 52, 53, 59, 63, 65, 66, 69, 70, 71, 72, 73, 76, 77, 78, 80, 81, 82, 83, 84, 91, 92, 93, 95, 98, 99, 103, 105, 106, 108, 111], "14": [1, 9, 10, 13, 15, 16, 19, 26, 27, 30, 34, 36, 40, 42, 43, 44, 48, 49, 50, 52, 53, 55, 57, 82, 98, 100, 103, 104, 105, 106, 109, 110, 112, 114], "ag1": [1, 40], "15": [1, 7, 10, 13, 15, 16, 19, 26, 27, 30, 34, 36, 40, 41, 42, 43, 44, 45, 48, 49, 50, 52, 53, 57, 81, 82, 98, 103, 104, 106, 109, 110, 112, 114], "ag2": [1, 40], "16": [1, 3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 81, 82, 98, 103, 104, 105, 106, 109, 110, 111, 112], "concat": 1, "17": [1, 12, 15, 16, 19, 20, 21, 26, 27, 30, 33, 34, 36, 39, 42, 44, 48, 49, 50, 52, 53, 57, 69, 81, 82, 87, 98, 103, 104, 106, 109, 110, 111, 112], "18": [1, 9, 15, 16, 19, 26, 27, 30, 42, 44, 46, 48, 49, 50, 52, 53, 57, 78, 81, 82, 86, 98, 103, 105, 106, 109, 110, 112, 113], "19": [1, 15, 16, 19, 22, 23, 24, 26, 27, 28, 30, 37, 40, 42, 44, 48, 49, 50, 52, 53, 57, 82, 98, 103, 104, 105, 106, 109, 112, 113], "avail": [1, 2, 3, 7, 15, 16, 19, 32, 33, 36, 40, 42, 43, 44, 53, 56, 57, 60, 66, 73, 77, 79, 82, 87, 96, 98, 99, 100, 102, 105, 106, 108, 109, 114], "keep": [1, 2, 3, 10, 14, 30, 34, 39, 43, 44, 48, 55, 72, 96, 99, 101, 102, 108], "well": [1, 2, 4, 7, 15, 32, 33, 44, 48, 61, 67, 99, 101, 105, 108], "equival": [1, 27, 48, 87], "result": [1, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 24, 30, 31, 36, 37, 38, 39, 40, 42, 43, 44, 48, 49, 52, 53, 61, 89, 94, 105, 106, 108, 110], "t": [1, 3, 4, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 24, 26, 27, 28, 30, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 52, 53, 55, 56, 57, 66, 82, 92, 96, 98, 100, 103, 104, 105, 106, 107, 108, 110, 111, 112, 114], "sort": [1, 26, 27, 30, 34, 53, 105, 106], "isdisjoint": 1, "do": [1, 3, 4, 6, 10, 11, 12, 13, 15, 16, 19, 22, 26, 27, 28, 30, 34, 37, 42, 44, 45, 46, 48, 50, 52, 53, 95, 99, 101, 102, 103, 105, 108, 114], "share": [1, 3, 105], "issubset": 1, "part": [1, 2, 3, 4, 15, 30, 48, 57, 101, 103, 105, 106, 108, 111], "is_strict_subset": 1, "issuperset": 1, "is_strict_superset": 1, "both": [1, 3, 4, 13, 15, 16, 22, 30, 38, 48, 50, 52, 53, 60, 63, 72, 81, 85, 87, 91, 98, 100, 102, 103, 105, 108, 109, 114], "intersect": [1, 106], "common": [1, 3, 7, 12, 13, 14, 15, 22, 26, 31, 32, 34, 53, 55, 68, 70, 104, 106, 108], "symmetric_differ": 1, "separ": [1, 5, 7, 15, 16, 19, 30, 31, 36, 40, 42, 43, 81, 83, 84, 100, 102, 106, 108, 114], "properti": [1, 16, 30, 39, 53, 60, 98, 105, 106, 109, 111, 112], "level": [1, 3, 4, 15, 48, 85, 98, 101, 108, 114], "connect": [1, 3, 4, 33, 50, 52, 53, 60, 61, 82, 87, 91, 105, 114], "residu": [1, 3, 7, 13, 14, 17, 19, 21, 22, 26, 28, 30, 36, 37, 38, 39, 40, 48, 49, 50, 52, 53, 55, 61, 65, 69, 70, 71, 72, 75, 81, 82, 83, 86, 87, 92, 93, 95, 96, 99, 105, 106, 109, 112, 114], "molecul": [1, 4, 10, 13, 26, 31, 38, 50, 55, 58, 61, 66, 78, 87, 92, 95, 98, 105, 106, 108, 109, 112], "segment": [1, 10, 49, 53, 61, 65, 70, 81, 87, 95, 99, 103, 105, 106, 109, 114], "20": [1, 15, 16, 19, 26, 30, 31, 42, 44, 48, 49, 50, 52, 53, 57, 82, 98, 103, 105, 106, 110, 111, 112, 113], "21": [1, 3, 9, 15, 16, 26, 27, 28, 30, 31, 33, 42, 44, 48, 49, 50, 52, 53, 57, 71, 81, 82, 98, 99, 103, 104, 105, 106, 109, 112, 113, 114], "24": [1, 15, 16, 26, 27, 30, 34, 39, 44, 49, 50, 53, 57, 81, 82, 87, 98, 103, 105, 112], "accord": [1, 13, 14, 87, 91, 106, 109], "produc": [1, 23, 27, 34, 53, 57, 67, 105, 108], "dictionari": [1, 18, 30, 57, 60, 89, 105, 108, 114], "22": [1, 15, 16, 26, 30, 44, 46, 48, 49, 50, 53, 57, 81, 82, 98, 103, 105, 106, 112], "mass": [1, 6, 7, 9, 10, 15, 16, 23, 24, 28, 30, 36, 40, 45, 46, 47, 48, 53, 55, 61, 63, 65, 66, 86, 87, 92, 97, 106, 109, 112, 113, 114], "32": [1, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 50, 52, 53, 55, 57, 98, 104, 105], "06": [1, 38, 104, 113], "008": [1, 53], "23853": 1, "11084": 1, "011": [1, 39, 53], "1040": [1, 98], "007": [1, 53, 82], "289": 1, "999": [1, 53, 65, 93], "11404": 1, "98977": 1, "multipl": [1, 3, 27, 39, 48, 53, 57, 62, 89, 94, 98, 100, 105, 106, 112, 114], "them": [1, 3, 4, 7, 9, 10, 13, 15, 18, 19, 22, 34, 38, 39, 42, 43, 44, 45, 46, 50, 52, 53, 55, 60, 61, 66, 68, 79, 81, 82, 89, 95, 101, 102, 103, 104, 105, 106, 108, 109, 112], "23": [1, 15, 16, 26, 30, 34, 44, 48, 49, 50, 53, 57, 81, 82, 87, 93, 98, 103, 106, 112], "sol": [1, 30, 36, 37, 40, 48, 50, 55, 87, 112], "22168": 1, "iter": [1, 12, 14, 15, 16, 30, 44, 49, 53, 103, 105, 108, 109, 110, 111], "atom1": [1, 95], "25": [1, 15, 26, 27, 30, 34, 46, 49, 50, 53, 57, 81, 82, 83, 98, 103, 105], "atom2": [1, 95], "26": [1, 15, 26, 30, 34, 49, 50, 53, 57, 81, 82, 83, 87, 93, 98, 103], "atom3": 1, "27": [1, 15, 26, 30, 49, 50, 53, 57, 81, 82, 93, 98, 103, 104, 107, 113], "28": [1, 3, 15, 30, 49, 50, 53, 57, 78, 98, 103], "ca": [1, 9, 10, 11, 12, 13, 14, 16, 18, 20, 21, 23, 24, 36, 37, 38, 39, 40, 42, 43, 44, 46, 53, 60, 98, 103, 106, 107], "c": [1, 3, 13, 27, 30, 31, 34, 36, 37, 38, 39, 46, 48, 50, 52, 53, 62, 67, 78, 81, 82, 85, 87, 88, 98, 100, 102, 103, 104, 105, 106, 107, 113], "cb": [1, 36, 53, 98], "h2": [1, 26, 28, 50, 78], "h": [1, 3, 27, 31, 36, 39, 45, 50, 52, 53, 78, 87, 96, 98, 103, 106], "neat": [1, 4], "shortcut": [1, 106], "simpli": [1, 3, 12, 13, 15, 21, 24, 26, 34, 40, 50, 52, 53, 60, 79, 84, 88, 101, 104, 105, 106, 109, 113], "29": [1, 13, 15, 30, 34, 46, 49, 50, 53, 57, 98, 103, 113], "30": [1, 13, 14, 15, 22, 23, 30, 33, 42, 49, 50, 53, 57, 78, 98, 103, 104, 110, 112, 113], "31": [1, 15, 16, 19, 30, 48, 49, 50, 53, 57, 81, 82, 98, 103], "altern": [1, 3, 13, 20, 30, 48, 57, 77, 81, 82, 96, 103, 106, 108, 109, 112], "provid": [1, 3, 4, 7, 12, 13, 15, 16, 17, 25, 26, 30, 31, 34, 37, 38, 43, 44, 46, 52, 53, 55, 57, 60, 61, 62, 65, 71, 81, 82, 83, 88, 94, 96, 99, 100, 103, 105, 106, 108, 109, 114], "belong": [1, 28, 50, 53, 61, 98, 106, 107], "33": [1, 15, 49, 50, 53, 57, 81, 82], "34": [1, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 30, 33, 37, 38, 39, 40, 42, 43, 44, 45, 49, 50, 52, 53, 55, 57, 81, 82, 98, 104], "These": [1, 3, 4, 5, 7, 8, 17, 24, 37, 43, 48, 53, 57, 72, 81, 82, 89, 94, 98, 106, 108, 109], "user": [1, 2, 3, 6, 7, 15, 19, 26, 28, 39, 42, 43, 44, 45, 49, 53, 60, 61, 66, 68, 69, 72, 78, 79, 87, 88, 100, 101, 102, 103, 105, 106, 108, 109, 114], "work": [1, 2, 4, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 56, 57, 62, 67, 79, 96, 99, 100, 102, 104, 105, 106, 108, 111], "35": [1, 19, 20, 30, 49, 50, 53, 57, 98, 103, 104], "null": 1, "36": [1, 49, 50, 53, 57, 83], "abov": [1, 3, 10, 13, 16, 23, 24, 26, 27, 28, 39, 48, 53, 55, 57, 83, 102, 103, 105, 106, 108, 109, 111], "37": [1, 38, 49, 50, 53, 57, 83, 98, 104], "For": [1, 2, 3, 4, 7, 9, 12, 13, 15, 16, 19, 26, 28, 30, 32, 33, 34, 37, 39, 40, 42, 43, 44, 46, 50, 52, 53, 55, 57, 60, 61, 66, 78, 83, 87, 89, 96, 98, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 114], "38": [1, 16, 23, 49, 52, 53, 57, 81, 82], "does_not_exist": 1, "39": [1, 13, 15, 16, 18, 20, 21, 23, 24, 26, 30, 31, 36, 37, 38, 39, 40, 42, 43, 44, 48, 49, 50, 52, 53, 57, 81, 82], "40": [1, 19, 30, 49, 53, 57, 81, 82, 98, 103, 110], "have": [1, 2, 3, 4, 10, 11, 12, 13, 14, 15, 16, 18, 19, 22, 24, 26, 27, 30, 31, 33, 34, 36, 37, 40, 42, 44, 45, 46, 48, 50, 53, 55, 57, 60, 63, 66, 67, 69, 71, 75, 79, 81, 82, 84, 87, 89, 95, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 114], "evalu": [1, 6, 7, 34, 41, 49, 106], "context": [1, 15, 30, 52, 53, 96, 108], "41": [1, 30, 49, 57, 81, 82, 98], "bool": [1, 3, 18, 50, 109, 110], "skip": [1, 3, 16, 46, 57, 100], "over": [1, 6, 7, 8, 12, 15, 16, 17, 18, 20, 21, 22, 26, 27, 30, 32, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 53, 55, 72, 102, 103, 105, 108, 110, 111, 112], "instead": [1, 3, 4, 9, 10, 12, 14, 15, 16, 19, 23, 24, 30, 34, 37, 39, 43, 44, 48, 50, 55, 61, 81, 82, 88, 92, 93, 100, 105, 106, 108, 111, 114], "rais": [1, 3, 33, 49, 53, 65, 79, 81, 82, 83, 99, 100, 101, 105, 108], "error": [1, 3, 4, 9, 49, 53, 72, 79, 89, 94, 100, 101, 105, 108], "which": [1, 3, 4, 10, 12, 13, 14, 15, 16, 19, 20, 21, 26, 27, 28, 30, 31, 33, 34, 37, 38, 39, 40, 42, 43, 44, 46, 48, 50, 53, 55, 57, 60, 61, 67, 68, 83, 87, 89, 91, 94, 96, 98, 99, 100, 102, 103, 105, 106, 108, 109, 112, 114], "help": [1, 2, 3, 4, 13, 16, 22, 96, 99, 100, 106, 108], "occasion": [1, 89, 94], "aris": [1, 4], "logic": 1, "too": [1, 16, 42, 44, 48, 53, 55, 56, 99, 108], "restrict": [1, 13, 14, 87], "geometr": [1, 6, 7, 26, 41, 52], "normal": [1, 3, 15, 30, 38, 39, 43, 44, 84, 91, 96, 102, 104, 105, 108], "static": [1, 10, 15, 53, 106, 109, 111, 114], "within": [1, 6, 7, 16, 17, 18, 19, 20, 22, 26, 28, 30, 36, 38, 40, 42, 43, 44, 45, 50, 53, 57, 60, 67, 77, 105, 106, 111, 112], "chang": [1, 5, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 26, 27, 28, 30, 33, 34, 38, 39, 42, 43, 44, 45, 49, 53, 55, 57, 61, 71, 72, 81, 87, 89, 100, 102, 103, 106, 108, 111], "trajectori": [1, 5, 6, 8, 9, 17, 18, 20, 21, 26, 27, 32, 33, 36, 37, 38, 40, 42, 43, 44, 45, 48, 49, 50, 52, 54, 58, 59, 61, 66, 71, 72, 81, 82, 91, 93, 99, 104, 105, 106, 108, 112, 113, 114], "frame": [1, 7, 9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 26, 27, 30, 32, 33, 34, 36, 37, 38, 39, 40, 43, 44, 46, 48, 49, 52, 55, 56, 61, 66, 71, 81, 82, 89, 94, 99, 105, 106, 108, 110, 111, 112, 114], "sever": [1, 3, 7, 16, 29, 30, 33, 34, 53, 82, 101, 105, 108, 114], "requir": [1, 3, 4, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 65, 66, 79, 81, 82, 83, 95, 96, 98, 100, 103, 105, 106, 108, 109], "function": [1, 2, 3, 4, 6, 7, 8, 13, 17, 19, 20, 21, 27, 30, 33, 34, 35, 37, 41, 42, 43, 44, 45, 46, 52, 53, 55, 56, 57, 85, 87, 98, 100, 101, 102, 104, 105, 106, 109, 111, 112, 114], "implement": [1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 32, 33, 34, 39, 53, 57, 62, 66, 76, 82, 87, 95, 106, 112], "mani": [1, 2, 3, 4, 13, 15, 16, 21, 26, 30, 34, 39, 40, 42, 43, 44, 53, 99, 100, 108, 109, 111, 114], "interest": [1, 19, 30, 48, 53, 100], "bond": [1, 13, 31, 49, 52, 53, 55, 57, 61, 66, 78, 80, 81, 82, 84, 86, 91, 92, 97, 98, 99, 104, 105, 106, 109, 114], "angl": [1, 6, 7, 22, 26, 27, 28, 35, 39, 50, 53, 57, 61, 66, 67, 84, 86, 92, 97, 99, 104, 105, 106, 109, 113, 114], "dihedr": [1, 6, 7, 35, 53, 61, 66, 84, 86, 97, 105, 106, 109, 114], "improperdihedr": [1, 109], "present": [1, 3, 19, 21, 26, 27, 40, 52, 65, 68, 81, 92, 95, 98, 105], "residuegroup": [1, 53, 98, 105, 109], "free": [2, 3, 101], "open": [2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 53, 55, 87, 89, 94, 104, 108], "sourc": [2, 3, 4, 16, 30, 53, 57, 84, 96, 100, 102, 105, 108], "project": [2, 3, 4, 7, 32, 37, 39, 43, 44, 48, 99, 105], "It": [2, 3, 4, 7, 9, 12, 13, 14, 15, 16, 21, 22, 26, 27, 28, 30, 32, 33, 34, 36, 37, 40, 45, 48, 49, 50, 53, 57, 60, 61, 67, 76, 78, 82, 85, 87, 89, 99, 104, 106, 108, 110, 112, 114], "evolv": 2, "grow": [2, 5, 108], "demand": 2, "base": [2, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 19, 28, 33, 39, 42, 44, 46, 50, 52, 53, 60, 61, 65, 79, 87, 89, 94, 102, 103, 104, 105, 106, 107, 108, 109], "develop": [2, 15, 52, 72, 101, 108], "team": 2, "veri": [2, 3, 12, 13, 15, 19, 23, 24, 27, 44, 45, 48, 79, 93, 103, 108], "much": [2, 3, 10, 11, 12, 13, 14, 16, 19, 30, 34, 42, 43, 48, 50, 60, 105, 108], "welcom": 2, "take": [2, 3, 4, 7, 14, 15, 16, 17, 23, 26, 30, 33, 42, 44, 48, 93, 96, 99, 100, 103, 106, 108, 109, 112, 114], "form": [2, 13, 19, 26, 42, 53, 55, 60], "bug": [2, 3, 16, 88, 102], "report": [2, 52, 99, 108], "enhanc": [2, 3], "request": [2, 4, 101, 102, 108], "issu": [2, 3, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 33, 38, 39, 43, 44, 49, 50, 57, 61, 63, 67, 79, 84, 87, 89, 94, 99, 100, 101, 102, 106, 108], "tracker": [2, 87, 99, 108], "fix": [2, 3, 4, 48, 49, 68, 72, 102], "improv": [2, 27, 99, 108], "speed": [2, 105, 108], "clariti": [2, 26], "modernis": 2, "featur": [2, 3, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 83, 99, 100, 102, 114], "addit": [2, 3, 7, 44, 57, 61, 82, 96, 98, 101, 102, 103, 105, 106, 108, 109], "document": [2, 5, 7, 15, 19, 22, 26, 30, 43, 48, 53, 66, 76, 89, 94, 105, 106, 108, 113], "includ": [2, 3, 4, 7, 9, 10, 13, 14, 15, 16, 19, 34, 36, 37, 39, 43, 48, 50, 52, 53, 55, 57, 84, 85, 87, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 109, 111, 112, 114], "typo": [2, 3], "build": [2, 15, 16, 50, 53, 65, 87, 99, 100, 105], "question": [2, 3, 99], "discuss": [2, 3, 15, 27, 60, 63, 79, 87, 99, 101, 108], "mdnalysi": [2, 99, 108], "mail": [2, 99, 100, 101, 102, 108], "commun": [2, 3, 88], "subscrib": [2, 99], "conduct": [2, 99], "member": 2, "agre": [2, 99], "adher": [2, 102], "pleas": [2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 26, 27, 28, 30, 33, 34, 38, 39, 42, 43, 44, 45, 46, 53, 61, 87, 99, 100, 102, 104, 105, 112], "read": [2, 3, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 30, 33, 38, 39, 43, 44, 49, 50, 52, 60, 62, 63, 64, 74, 80, 90, 91, 92, 99, 105, 106, 109, 110, 111, 113, 114], "mdanalysistest": [2, 3, 9, 10, 11, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 55, 57, 100, 101, 102, 103, 105, 108], "packag": [2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 61, 79, 86, 96, 100, 101, 104, 105, 106, 108], "distribut": [2, 3, 6, 7, 15, 30, 35, 38, 41, 42, 44, 45, 70, 100, 102], "under": [2, 3, 15, 19, 53, 87, 101, 105, 108, 110], "gnu": [2, 108], "gener": [2, 3, 4, 7, 8, 9, 10, 14, 15, 18, 19, 20, 28, 30, 34, 37, 38, 39, 48, 50, 53, 55, 58, 59, 61, 67, 77, 80, 89, 94, 99, 102, 103, 104, 105, 113, 114], "public": [2, 3, 16, 30, 99, 102, 104, 108], "licens": [2, 15, 105, 108], "later": [2, 4, 13, 15, 102, 105, 106], "copyleft": 2, "deriv": [2, 3, 84, 87, 98, 105, 109], "made": [2, 3, 4, 26, 48, 71, 103, 105, 106, 109], "Be": [2, 15, 100], "sure": [2, 3, 4, 18, 100, 102, 106, 108], "comfort": 2, "befor": [2, 3, 4, 13, 16, 30, 36, 45, 48, 60, 89, 100, 101, 102, 105, 106, 108, 111], "push": [2, 4, 15, 102, 108], "page": [2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 61, 102, 104, 106, 108], "came": [2, 108], "panda": [2, 13, 15, 16, 18, 19, 20, 21, 26, 33, 34, 49, 53, 108], "guid": [2, 3, 6, 7, 11, 12, 13, 15, 16, 18, 20, 21, 28, 33, 37, 38, 40, 42, 43, 44, 45, 49, 69, 100, 108], "idea": [2, 3, 53, 102], "If": [2, 3, 4, 7, 9, 10, 11, 12, 13, 15, 16, 23, 26, 27, 30, 34, 36, 37, 38, 40, 42, 44, 46, 50, 52, 53, 55, 57, 61, 65, 66, 67, 68, 79, 81, 82, 83, 84, 88, 89, 92, 96, 99, 100, 101, 102, 103, 105, 106, 108, 109, 112, 114], "look": [2, 3, 4, 10, 12, 13, 15, 19, 23, 24, 26, 28, 36, 37, 39, 48, 55, 61, 83, 86, 92, 96, 98, 108, 111], "brand": 2, "we": [2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 68, 82, 88, 96, 98, 99, 100, 101, 102, 105, 108, 109], "recommend": [2, 3, 21, 26, 45, 61, 100, 101, 102, 108], "go": [2, 3, 4, 15, 16, 96, 102, 106], "main": [2, 4, 100], "codebas": [2, 16, 105], "your": [2, 4, 5, 6, 7, 10, 13, 15, 17, 19, 20, 21, 22, 26, 27, 30, 32, 34, 36, 37, 40, 42, 43, 44, 45, 46, 48, 49, 50, 53, 55, 60, 61, 67, 75, 84, 87, 99, 100, 103, 104, 105, 108, 111, 112], "own": [2, 3, 4, 6, 7, 13, 15, 17, 19, 20, 21, 30, 42, 52, 53, 66, 99, 101, 108, 112], "encourag": [2, 108], "an": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 19, 20, 21, 22, 23, 24, 26, 31, 33, 34, 37, 38, 39, 40, 42, 43, 44, 46, 48, 49, 50, 52, 53, 57, 60, 62, 66, 67, 69, 71, 72, 78, 80, 83, 84, 85, 87, 88, 89, 94, 96, 98, 99, 100, 101, 102, 104, 105, 106, 108, 110, 112, 114], "toolkit": [2, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 52, 53, 55, 99, 104], "mdakit": [2, 105], "standalon": [2, 16, 108], "solv": [2, 87], "specif": [2, 3, 4, 7, 14, 16, 26, 27, 29, 30, 36, 53, 56, 60, 66, 73, 98, 100, 101, 103, 104, 105, 108, 110, 114], "scientif": [2, 3, 15, 85, 104, 105], "technic": [2, 3, 4, 88], "problem": [2, 3, 4, 13, 61, 68, 87, 99], "option": [2, 9, 10, 14, 16, 19, 22, 23, 24, 30, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 53, 55, 57, 61, 66, 67, 82, 83, 95, 100, 103, 104, 105, 108, 109, 114], "regist": [2, 44], "registri": 2, "advertis": [2, 105], "broader": 2, "continu": [2, 3, 19, 27, 48, 89, 94, 102, 103, 105, 109, 114], "against": [2, 4, 102, 105], "latest": [2, 3, 15, 100, 108], "make": [2, 3, 4, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 24, 26, 28, 33, 34, 38, 39, 40, 42, 43, 44, 45, 49, 53, 55, 56, 98, 100, 102, 103, 106, 108, 109, 111, 112, 114], "peopl": [2, 3, 102], "togeth": [2, 53, 99, 103, 112], "daunt": 2, "aspect": 2, "stick": [2, 50], "guidelin": [2, 105], "process": [2, 3, 7, 15, 17, 18, 19, 23, 24, 26, 27, 48, 67, 102, 105, 108, 114], "straightforward": [2, 53, 103, 106], "mostli": [2, 15], "troubl": [2, 40], "As": [2, 3, 4, 10, 12, 13, 14, 15, 16, 23, 24, 30, 33, 34, 39, 42, 43, 44, 48, 50, 53, 55, 57, 61, 84, 93, 95, 96, 98, 100, 102, 103, 105, 106, 108, 109, 113], "alwai": [2, 3, 4, 10, 15, 16, 20, 26, 33, 34, 53, 57, 60, 61, 67, 79, 81, 83, 84, 87, 88, 96, 99, 101, 103, 106, 108, 109, 111, 113], "difficulti": [2, 99], "feel": [2, 3], "ask": [2, 3, 16, 99, 100, 102, 108], "host": [2, 3, 5], "need": [2, 3, 7, 8, 9, 14, 15, 16, 19, 24, 30, 33, 34, 42, 43, 44, 46, 48, 50, 52, 53, 55, 67, 98, 99, 100, 101, 102, 103, 105, 108, 111, 112], "sign": [2, 34], "up": [2, 3, 4, 12, 15, 16, 27, 31, 42, 44, 46, 52, 53, 57, 66, 93, 96, 99, 100, 103, 105, 106, 108, 112], "account": [2, 3, 4, 7, 32, 34, 40, 49], "great": 2, "resourc": [2, 3, 15, 42, 44, 55, 99, 108], "learn": [2, 3, 7, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 33, 38, 39, 42, 43, 44, 49, 99], "numpi": [2, 3, 10, 12, 15, 16, 18, 19, 20, 21, 23, 24, 26, 27, 28, 30, 33, 34, 37, 40, 42, 43, 44, 45, 46, 48, 49, 50, 53, 55, 100, 101, 102, 103, 105, 108, 109, 112], "matthew": [2, 52], "brett": 2, "pydagogu": 2, "instruct": [2, 53, 100], "instal": [2, 3, 4, 5, 7, 10, 30, 33, 34, 42, 43, 44, 46, 48, 53, 55, 79, 101, 104, 105, 108], "set": [2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 19, 23, 26, 27, 30, 31, 34, 37, 46, 48, 50, 52, 53, 57, 61, 66, 67, 68, 81, 83, 87, 88, 89, 92, 96, 101, 102, 103, 104, 105, 106, 108, 109, 111, 114], "ssh": 2, "configur": [2, 7, 19, 23, 32, 41, 67, 108], "step": [2, 3, 10, 13, 14, 15, 16, 26, 34, 37, 39, 44, 48, 52, 53, 55, 57, 68, 72, 88, 105, 112, 114], "complet": [2, 3, 5, 30, 53, 57, 112], "seamlessli": [2, 67], "between": [2, 3, 4, 6, 7, 8, 9, 11, 14, 16, 17, 18, 19, 21, 24, 26, 27, 30, 32, 33, 34, 36, 38, 39, 40, 41, 46, 50, 53, 60, 80, 82, 83, 91, 99, 105, 108, 114], "local": [2, 3, 4, 7, 15, 16, 19, 20, 32, 33, 39, 48, 101, 102, 104, 108], "repositori": [2, 3, 4, 5, 99, 102], "would": [3, 13, 15, 16, 19, 39, 43, 100, 101, 105, 106, 109], "start": [3, 4, 6, 12, 13, 15, 16, 26, 30, 50, 57, 61, 69, 83, 87, 91, 101, 105, 106, 108], "search": [3, 30, 106], "someon": 3, "els": [3, 37, 83, 101], "don": [3, 10, 11, 18, 24, 26, 30, 40, 42, 53, 55, 100, 105, 111], "follow": [3, 4, 13, 16, 18, 23, 26, 27, 30, 34, 38, 46, 48, 53, 57, 60, 61, 63, 65, 67, 79, 81, 83, 87, 88, 91, 95, 100, 101, 102, 103, 105, 106, 108, 109, 114], "minor": [3, 102, 105], "ahead": [3, 102, 108], "major": [3, 53, 102], "That": [3, 19], "other": [3, 4, 6, 7, 9, 10, 11, 12, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 37, 38, 39, 42, 43, 44, 45, 46, 49, 53, 60, 61, 66, 67, 68, 69, 71, 72, 76, 78, 79, 80, 81, 86, 87, 95, 96, 98, 99, 100, 105, 106, 108, 109, 112, 113], "weigh": 3, "should": [3, 4, 5, 12, 13, 14, 15, 22, 26, 27, 30, 31, 34, 36, 42, 44, 53, 57, 68, 72, 77, 78, 83, 87, 92, 100, 101, 102, 105, 108, 109, 114], "link": [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 102, 104], "descript": [3, 5, 15, 30, 53, 57, 58, 61, 83, 87, 96, 97, 105, 108, 109], "here": [3, 4, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 60, 78, 100, 102, 105, 107, 109], "overview": [3, 4], "workflow": [3, 4, 48, 108], "inlin": [3, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 53], "expand": [3, 4, 44, 84], "throughout": [3, 4, 9, 10, 14, 19, 26, 27, 30, 34, 39, 48, 50, 53, 55, 98, 105], "rest": [3, 4, 14, 19, 26], "isol": [3, 4], "version": [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 67, 70, 71, 85, 99, 105, 109], "comput": [3, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 52, 53, 55, 56, 99, 100, 104, 108, 109, 113], "off": [3, 4, 12, 16, 46, 50, 89, 106, 108], "run": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 42, 44, 46, 48, 49, 52, 53, 55, 59, 61, 97, 100, 101, 102, 105, 110], "hit": [3, 4, 108], "button": [3, 4], "want": [3, 4, 7, 9, 10, 15, 16, 18, 19, 21, 22, 23, 26, 30, 31, 36, 42, 43, 44, 48, 50, 52, 55, 96, 100, 108, 111], "clone": [3, 100], "machin": [3, 4, 15, 48, 100, 105, 108], "git": [3, 4, 100, 102], "http": [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 100, 104, 105], "com": [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 100, 104, 105, 108], "cd": [3, 4, 100, 102, 104, 108], "remot": [3, 4], "upstream": [3, 4], "directori": [3, 4, 5, 30, 89, 101, 102, 104], "ll": [3, 4, 27], "highli": [3, 26, 61, 85, 100], "experiment": [3, 30], "interfer": [3, 100], "stabl": [3, 13, 14, 22, 100], "sinc": [3, 4, 15, 45, 57, 67, 87, 102, 106], "split": [3, 5, 26, 36, 89, 94, 98, 103, 105], "actual": [3, 4, 5, 16, 40, 52, 56, 108, 111, 112], "suit": [3, 53, 100, 114], "mode": [3, 33, 34, 38, 96, 104], "either": [3, 12, 13, 15, 19, 27, 30, 43, 45, 57, 62, 83, 103, 106, 109], "time": [3, 4, 12, 13, 14, 15, 16, 18, 19, 20, 26, 30, 33, 34, 36, 37, 38, 40, 52, 53, 55, 56, 57, 61, 63, 67, 68, 72, 78, 79, 88, 89, 94, 99, 102, 103, 105, 106, 108, 111, 112, 114], "contributor": [3, 108], "lot": [3, 66, 108], "experi": 3, "manag": [3, 15, 30, 53, 96, 100, 104, 108], "strongli": [3, 100, 108], "suggest": [3, 12, 16, 19], "choos": [3, 10, 13, 16, 19, 20, 26, 30, 34, 36, 42, 43, 48, 49, 53, 103], "anaconda": 3, "miniconda": [3, 4], "date": [3, 4, 102], "updat": [3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 72, 99, 100, 105, 106, 108, 110, 114], "without": [3, 4, 13, 15, 28, 30, 34, 37, 50, 53, 61, 87, 99, 103, 104, 105, 106, 108, 109, 114], "touch": [3, 61], "exist": [3, 15, 19, 37, 53, 60, 103, 108, 109], "dev": [3, 102], "activ": [3, 4, 82, 100], "when": [3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 22, 23, 24, 26, 27, 28, 30, 33, 34, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 57, 60, 61, 63, 66, 67, 79, 83, 87, 89, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 111, 113, 114], "info": [3, 27], "current": [3, 4, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 30, 33, 38, 39, 42, 43, 44, 45, 48, 49, 50, 53, 55, 57, 63, 67, 70, 72, 79, 81, 84, 87, 88, 89, 96, 100, 102, 103, 104, 106, 111, 112, 114], "finish": [3, 16], "deactiv": 3, "root": [3, 6, 7, 8, 9, 11, 15, 16, 38, 78, 82], "full": [3, 4, 26, 30, 44, 57, 66, 85, 89, 100, 102, 112], "detail": [3, 15, 30, 45, 53, 61, 80, 81, 98, 105, 108, 112], "purpos": [3, 19, 28], "leverag": [3, 15], "what": [3, 6, 30, 50, 53, 98, 101, 108, 109], "let": [3, 4, 16, 26, 27, 40, 102], "done": [3, 14, 16, 30, 109, 114], "m": [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 102, 104, 113], "my": [3, 4, 5, 18, 48], "env": [3, 4, 11, 12, 13, 15, 16, 18, 20, 21, 28, 33, 37, 38, 40, 42, 43, 44, 45, 49, 108], "folder": [3, 30, 108], "termin": [3, 5], "myproject": 3, "bin": [3, 9, 10, 11, 12, 13, 14, 26, 30, 33, 36, 40, 48, 49, 104, 105], "now": [3, 4, 11, 14, 16, 19, 27, 40, 43, 46, 48, 50, 52, 55, 81, 102, 105], "via": [3, 4, 26, 27, 28, 33, 43, 77, 98, 100, 102, 104, 105, 107], "affect": [3, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 27, 33, 38, 39, 43, 44, 49, 105], "global": [3, 7, 32, 33, 34, 101, 106], "session": [3, 5], "virtualenvwrapp": 3, "easier": [3, 4, 13, 26, 33, 34, 44, 55, 105], "organis": [3, 108], "singl": [3, 13, 15, 26, 27, 38, 46, 57, 61, 81, 105, 106, 108, 114], "so": [3, 5, 10, 11, 13, 14, 15, 16, 19, 22, 23, 24, 30, 34, 36, 37, 40, 42, 45, 48, 50, 55, 57, 60, 83, 87, 88, 92, 96, 102, 103, 105, 106, 108, 109, 114], "scatter": [3, 33, 34, 37, 44, 48], "command": [3, 4, 5, 48, 53, 66, 68, 76, 96, 100, 104, 108], "easi": [3, 12, 18, 104, 112], "creation": [3, 57, 78, 102, 105], "delet": [3, 102], "copi": [3, 4, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 38, 39, 42, 43, 44, 45, 49, 50, 57, 102, 105, 108], "tab": [3, 83], "outsid": [3, 31, 49, 55, 57, 98, 101, 105], "Then": [3, 4, 12, 13, 15, 18, 24, 53], "load": [3, 4, 30, 50, 61, 78, 89, 99, 103, 105, 109, 111, 112], "bashrc": [3, 5], "execut": [3, 4, 15, 30, 48, 108, 112], "decid": 3, "store": [3, 5, 12, 30, 34, 39, 48, 53, 57, 69, 85, 88, 89, 94, 105, 113], "export": [3, 4, 5, 48, 53, 104, 106], "workon_hom": 3, "mkdir": 3, "p": [3, 14, 16, 26, 27, 30, 33, 34, 38, 46, 48, 52, 53, 57, 61, 63, 67, 79, 81, 88, 95, 104, 105, 106, 107, 113, 114], "usr": 3, "sh": 3, "mkvirtualenv": 3, "our": [3, 10, 11, 12, 14, 16, 18, 22, 24, 27, 31, 44, 46, 48, 50, 52, 53, 55, 105, 108], "workon": 3, "exit": [3, 30], "especi": [3, 4, 27, 67, 100, 102], "interpret": [3, 7, 24, 32, 33, 34, 42, 53, 67, 105], "flag": [3, 4, 84, 86, 103, 105, 108], "hitchhik": 3, "good": [3, 4, 102], "tutori": [3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 19, 30, 32, 34, 39, 40, 48, 50, 53, 55, 100, 112, 114], "give": [3, 4, 7, 16, 17, 19, 21, 23, 24, 31, 37, 40, 44, 49, 53, 67, 98, 100, 108, 110, 112, 114], "depth": [3, 34], "explan": [3, 4, 9, 11, 30, 53], "One": [3, 4, 13, 14, 18, 30, 48, 52, 57, 103, 109], "often": [3, 4, 7, 12, 13, 19, 32, 48, 50, 52, 53, 61, 68, 80, 88, 100, 103, 106, 108, 112], "maco": [3, 105], "becaus": [3, 10, 13, 15, 16, 48, 50, 53, 56, 66, 68, 79, 101, 108, 111], "default": [3, 5, 7, 9, 12, 13, 19, 22, 24, 27, 30, 33, 34, 36, 38, 39, 40, 46, 48, 49, 50, 53, 57, 61, 65, 66, 67, 68, 76, 79, 81, 82, 88, 94, 95, 96, 105, 106, 108, 111, 113, 114], "simultan": [3, 19, 85], "quit": [3, 15, 34, 44, 96, 100, 114], "low": [3, 7, 12, 14, 32, 42], "256": 3, "increas": [3, 27, 33, 42, 43, 44, 85, 102, 105, 108], "ulimit": 3, "4096": 3, "appli": [3, 13, 16, 19, 30, 33, 36, 38, 42, 43, 44, 98, 104, 105, 106, 109, 111, 112], "high": [3, 4, 7, 14, 15, 32, 34, 42, 45, 52, 85, 106], "limit": [3, 15, 16, 30, 34, 36, 40, 55, 57, 88], "profil": 3, "mix": [3, 46, 103], "forg": [3, 100], "biopython": [3, 101, 105], "80": [3, 16, 19, 81, 82, 105, 106, 110], "networkx": [3, 105], "griddataformat": [3, 101], "mmtf": [3, 58, 59, 61, 97, 101, 106, 109], "joblib": [3, 15, 26], "scipi": [3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 79, 101, 104, 105], "matplotlib": [3, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 53, 57, 101], "tqdm": [3, 27, 105], "43": [3, 49, 57, 103], "threadpoolctl": 3, "fasten": [3, 105], "netcdf4": [3, 79, 108], "h5py": 3, "chemfil": [3, 58, 59, 61], "pyedr": 3, "pytng": [3, 105], "gsd": [3, 58, 59, 61, 97, 105, 109], "rdkit": [3, 58, 61, 78, 105], "2020": [3, 104, 105], "03": [3, 36, 37, 42, 104, 107, 109], "parm": [3, 51, 58, 59, 61, 86, 105], "seaborn": [3, 12, 18, 19, 33, 34, 46], "scikit": [3, 7, 42, 43, 44], "tidynam": 3, "xdrlib": 3, "sphinx": [3, 4], "theme": 3, "docutil": 3, "sitemap": 3, "sphinxcontrib": 3, "bibtex": [3, 53, 104], "pybtex": 3, "compil": [3, 4, 79, 105], "gcc": [3, 100], "clang": 3, "testsuit": [3, 5, 100, 102, 108], "At": [3, 102, 106, 108, 112], "point": [3, 4, 7, 13, 15, 30, 31, 32, 33, 37, 42, 44, 46, 48, 53, 55, 57, 102, 105, 106, 108, 110, 111], "abl": [3, 4, 30, 101, 102, 105, 108], "built": [3, 4, 30, 87, 108], "visibl": [3, 14, 19], "end": [3, 15, 45, 81, 108, 111], "__version__": [3, 50, 53, 102], "clustalw": 3, "next": [3, 13, 19, 26, 44, 46, 53, 55, 58, 59, 61, 89, 105, 106, 111], "releas": [3, 84, 87, 100, 108], "integr": [3, 7, 15, 32, 33, 52, 85, 105], "snapshot": [3, 102], "taken": [3, 27, 40, 42, 83, 95, 106, 108], "upload": 3, "pypi": [3, 102, 105], "approv": [3, 102], "shini": 3, "checkout": [3, 4], "b": [3, 4, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 61, 67, 81, 82, 87, 88, 98, 104, 106, 108, 109], "clear": [3, 4, 5, 9], "bring": 3, "switch": [3, 9, 19, 79, 102], "There": [3, 12, 19, 26, 30, 33, 34, 36, 37, 40, 50, 81, 82, 99, 112, 114], "special": [3, 4, 53, 108], "gh": [3, 4, 102], "prepar": [3, 16], "product": [3, 14, 34, 104], "handl": [3, 15, 79, 112], "old": [3, 15, 53, 67, 96, 103, 108], "kept": [3, 34, 79], "protect": [3, 102], "histor": [3, 4], "reason": [3, 38, 52, 88, 108], "held": [3, 109], "long": [3, 12, 30, 33, 37, 42, 44, 85, 102, 114], "histori": [3, 58, 59, 61, 97, 105, 109], "hasn": 3, "consist": [3, 4, 50, 53, 71, 87, 106], "style": [3, 66, 67, 85, 89, 94, 105, 106], "try": [3, 4, 43, 55, 78, 87, 92, 99, 100, 101, 103, 108], "conform": [3, 7, 9, 10, 11, 12, 13, 14, 18, 19, 20, 21, 22, 32, 33, 34, 37, 38, 41, 42, 43, 44, 45, 46, 53, 83, 104], "strategi": [3, 105], "thu": [3, 4, 53, 87], "79": [3, 52, 81, 82], "charact": [3, 30, 71, 81, 82, 83, 93, 106], "less": [3, 7, 18, 19, 26, 32, 34, 57, 68, 100], "break": [3, 27, 66, 101, 105, 108], "sensibli": 3, "indent": 3, "space": [3, 7, 32, 33, 41, 42, 43, 44, 48, 50, 83, 84, 100, 106, 108], "per": [3, 19, 26, 66, 83, 105, 108], "capitalclass": 3, "capit": 3, "noun": 3, "underscore_method": 3, "lower": [3, 7, 19, 24, 30, 32, 33, 34, 38, 40, 42, 43, 44, 57], "case": [3, 9, 10, 12, 13, 14, 15, 27, 28, 30, 36, 44, 48, 52, 53, 55, 57, 68, 82, 87, 89, 96, 99, 100, 104, 105, 106, 108, 111, 114], "underscor": 3, "id": [3, 13, 23, 24, 26, 42, 43, 44, 45, 50, 61, 65, 66, 69, 75, 83, 84, 87, 98, 104, 106, 109], "pycharm": 3, "extern": [3, 5, 7, 48, 100, 101, 105, 106], "tool": [3, 4, 7, 15, 19, 30, 33, 34, 48, 53, 67, 78, 80, 96, 99, 100, 103], "flake8": 3, "lint": 3, "emac": 3, "vim": 3, "check": [3, 4, 5, 11, 26, 27, 28, 50, 53, 57, 60, 66, 67, 72, 89, 102, 108], "elpi": 3, "autom": [3, 53, 102, 108], "formatt": 3, "autopep8": 3, "yapf": 3, "plugin": [3, 4, 95, 100, 101, 108], "strive": [3, 101, 108], "small": [3, 4, 5, 26, 27, 57, 78, 101, 108], "lightweight": [3, 15, 101], "visual": [3, 4, 14, 15, 48, 96, 100, 105], "reli": [3, 53, 60, 83, 100, 108], "treat": [3, 42, 45, 48, 53, 72, 82, 89, 114], "rule": [3, 4, 44, 99, 102, 106, 108], "setup": [3, 100, 101, 102, 105, 108], "script": [3, 7, 9, 10, 11, 12, 13, 14, 15, 33, 53, 83, 102, 104], "standard": [3, 7, 30, 37, 39, 42, 44, 53, 58, 59, 61, 65, 82, 84, 93, 97, 101, 105, 106], "pyx": 3, "convert": [3, 24, 37, 48, 52, 53, 57, 62, 63, 76, 78, 80, 81, 83, 86, 105, 113], "newer": [3, 86], "than": [3, 13, 14, 15, 18, 19, 26, 28, 30, 36, 40, 42, 50, 53, 57, 60, 65, 71, 75, 83, 88, 99, 105, 106, 108], "alreadi": [3, 7, 11, 14, 16, 33, 34, 46, 50, 53, 66, 99, 100, 106, 109], "forc": [3, 26, 50, 52, 53, 57, 58, 60, 61, 63, 89, 94, 103, 105, 106, 107, 109, 111, 114], "trigger": [3, 102, 108], "convers": [3, 13, 57, 99], "deliv": 3, "who": [3, 4, 7, 16, 101], "automat": [3, 7, 10, 16, 18, 30, 55, 57, 65, 66, 76, 79, 89, 94, 99, 101, 102, 103, 104, 106, 114], "outdat": 3, "place": [3, 10, 34, 94, 99, 102], "final": [3, 10, 13, 15, 19, 39, 40, 48, 87, 102, 106], "fortran": 3, "librari": [3, 9, 10, 14, 15, 19, 33, 34, 39, 46, 48, 50, 55, 58, 61, 62, 79, 80, 85, 99, 101, 102, 104, 105, 108], "dedic": 3, "src": [3, 84, 87], "tree": 3, "lib": [3, 11, 12, 13, 15, 16, 18, 20, 21, 28, 33, 37, 38, 40, 42, 43, 44, 45, 49, 105, 108], "_distanc": 3, "distanc": [3, 6, 8, 13, 15, 16, 18, 19, 21, 26, 27, 30, 32, 33, 36, 38, 40, 42, 44, 50, 52, 53, 60, 105, 106, 109], "coordin": [3, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 24, 26, 28, 30, 32, 33, 34, 36, 38, 39, 42, 43, 44, 45, 49, 50, 52, 55, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93, 94, 95, 103, 104, 105, 106, 108, 109, 111, 112, 114], "_dcdmodul": 3, "serious": 3, "expect": [3, 9, 10, 14, 19, 34, 37, 39, 48, 50, 55, 76, 99, 105, 106, 108, 109], "aim": [3, 15, 58, 59, 61, 97, 105, 108], "90": [3, 22, 34, 37, 49, 50, 100, 106, 108, 110, 111, 112], "coverag": [3, 101], "reflect": [3, 105, 106], "ongo": [3, 105], "changelog": [3, 102, 105], "entri": [3, 30, 40, 66, 83, 102, 105], "author": [3, 101, 102], "address": [3, 108], "partial": [3, 15, 28, 61, 82, 108, 109, 112], "reformat": 3, "modifi": [3, 4, 6, 11, 28, 37, 78, 102, 105, 112, 114], "progress": [3, 15, 16, 100, 103, 105], "adapt": 3, "big": 3, "wa": [3, 4, 26, 50, 57, 71, 72, 83, 95, 102, 105, 106, 108, 109], "design": [3, 18, 53, 85], "black": [3, 37], "mind": [3, 30], "henc": [3, 4], "pr": [3, 4, 102, 103, 105], "bot": [3, 102], "get": [3, 13, 15, 16, 24, 34, 36, 40, 42, 43, 44, 45, 48, 61, 72, 79, 86, 87, 89, 98, 99, 100, 105, 108, 109], "diff": [3, 108], "after": [3, 4, 13, 26, 30, 36, 48, 53, 57, 95, 103, 106, 108, 111], "repo": 3, "re": [3, 4, 10, 14, 16, 19, 24, 37, 53, 55, 78, 96, 102, 106, 108], "fetch": 3, "content": [3, 4, 95], "modif": [3, 78, 89], "r": [3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 52, 53, 55, 96, 102, 104, 105, 109], "l": [3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 96, 104], "compli": 3, "show": [3, 9, 10, 13, 14, 15, 19, 23, 24, 26, 27, 34, 37, 39, 44, 48, 50, 52, 53, 55, 57, 98, 106, 108, 112], "warn": [3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 50, 52, 53, 57, 61, 65, 81, 82, 89, 100, 101], "manual": [3, 4, 12, 50, 53, 87, 108], "fault": 3, "Or": [3, 30, 57], "ok": [3, 100, 101, 102, 108], "just": [3, 4, 23, 30, 48, 55, 57, 82, 98, 102, 106, 108, 112], "happi": [3, 22], "revis": 3, "two": [3, 4, 5, 6, 7, 8, 10, 15, 17, 19, 26, 27, 31, 32, 38, 42, 44, 46, 50, 53, 60, 98, 99, 103, 105, 106, 109, 114], "rather": [3, 16, 19, 26, 36, 40, 53, 83, 99, 105, 108], "thing": [3, 4], "sai": 3, "messag": [3, 42, 53, 89, 100, 101, 102], "onc": [3, 16, 39, 53, 55, 102, 104, 105, 108, 111, 112], "ve": [3, 108], "statu": [3, 15, 82], "tell": [3, 4, 19, 53, 84, 93, 108], "track": [3, 30, 34, 105], "path": [3, 4, 5, 7, 19, 30, 32, 41, 53, 57, 104, 105, 108], "again": [3, 13, 19, 30, 34, 37, 43, 46, 89, 96, 105, 108], "someth": [3, 52, 53, 112], "rel": [3, 9, 10, 15, 16, 27, 48, 60, 101, 108, 109], "editor": [3, 15, 45, 52, 53, 104], "comment": [3, 9, 10, 14, 19, 34, 39, 48, 50, 55, 91, 95, 108], "verbos": [3, 16, 26, 27, 28, 53, 102, 103, 108], "short": [3, 27, 30, 33, 34, 108], "50": [3, 19, 37, 44, 49, 52, 53, 57, 104, 110, 113], "subject": 3, "summar": [3, 102], "leav": [3, 55, 108], "blank": [3, 82, 95, 105, 114], "paragraph": 3, "bullet": 3, "tim": 3, "pope": 3, "note": [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 53, 55, 83, 84, 98, 102, 104, 106, 108, 111, 113], "about": [3, 4, 7, 9, 14, 15, 26, 32, 33, 34, 37, 46, 53, 70, 84, 87, 99, 105, 108, 109], "rational": 3, "appear": [3, 34, 38, 48, 63, 68, 96, 102, 103], "publicli": [3, 73], "given": [3, 4, 12, 15, 19, 20, 22, 24, 28, 34, 37, 39, 40, 44, 48, 53, 57, 60, 102, 103, 105, 106, 109, 112, 113, 114], "v": [3, 6, 7, 17, 18, 19, 21, 34, 104, 105], "describ": [3, 7, 15, 32, 34, 36, 39, 40, 87, 103, 104, 106, 108, 114], "usernam": 3, "yet": [3, 108], "happen": [3, 89, 101, 106], "submit": [3, 108], "while": [3, 4, 5, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 26, 28, 30, 33, 34, 37, 38, 39, 42, 43, 44, 45, 46, 49, 52, 53, 80, 83, 84, 87, 98, 100, 102, 103, 106, 108, 111], "avoid": [3, 14, 15, 16, 36, 42, 44, 48, 57, 98, 100, 101, 102, 105], "merg": [3, 4, 9, 10, 19, 34, 102, 103, 105, 108, 114], "conflict": [3, 4, 88, 108], "retriev": [3, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "replai": 3, "top": [3, 4, 44, 59, 61, 87, 88, 96, 97, 101, 108, 109], "lead": [3, 4, 105, 114], "resolv": [3, 48, 99], "uncommit": 3, "stash": 3, "prior": [3, 28, 71, 87, 105, 109], "effect": [3, 7, 10, 32, 43, 100], "reappli": 3, "f": [3, 4, 11, 15, 26, 27, 28, 30, 34, 37, 39, 40, 46, 53, 57, 60, 98, 104, 105, 113], "approach": [3, 4, 27, 33, 38, 104], "failur": [3, 4, 102, 108], "review": [3, 4, 104], "eventu": 3, "navig": [3, 4], "click": [3, 108], "okai": 3, "checklist": 3, "refer": [3, 6, 7, 8, 17, 82, 89, 98, 103, 105, 112], "send": 3, "sent": 3, "maintain": [3, 4, 6, 99, 108], "travi": [3, 108], "appveyor": [3, 108], "codecov": 3, "fail": [3, 71, 83, 88, 89, 94, 100, 102, 105], "did": [3, 14, 81, 105], "restart": [3, 53, 58, 59, 61, 102], "kind": [3, 4, 13, 99, 114], "map": [3, 4, 6, 7, 12, 15, 30, 32, 34, 44, 46, 48, 57, 104, 108], "how": [3, 4, 10, 12, 13, 14, 15, 16, 18, 21, 23, 24, 27, 28, 30, 34, 38, 39, 40, 42, 43, 44, 53, 55, 71, 78, 84, 100, 102, 106, 108, 112, 113, 114], "combin": [3, 4, 7, 26, 32, 34, 42, 50, 53, 87, 106, 114], "topic": [3, 4], "analys": [3, 4, 6, 13, 16, 17, 25, 26, 28, 29, 52, 53, 99, 105], "itself": [3, 4, 5, 6, 7, 8, 9, 10, 16, 19, 30, 34, 39, 68, 79, 96, 106], "larg": [3, 4, 7, 10, 13, 15, 17, 19, 20, 33, 36, 40, 50, 53, 55, 56, 83, 101, 102, 104, 105, 107, 108], "meant": [3, 4], "usag": [3, 4, 26, 34, 53, 99], "individu": [3, 4, 7, 13, 30, 38, 49, 53, 57, 77, 96], "deprec": [3, 4, 108], "notic": [3, 4, 16], "string": [3, 4, 19, 28, 39, 81, 83, 96, 105, 106, 108, 109], "wide": [3, 61], "nice": 3, "text": [3, 13, 15, 16, 20, 21, 23, 24, 30, 36, 38, 40, 43, 44, 57], "napoleon": 3, "specifi": [3, 16, 19, 26, 27, 30, 42, 43, 44, 49, 53, 57, 60, 61, 66, 83, 93, 103, 106, 108, 114], "extend": [3, 23, 24, 50, 58, 59, 61, 65, 84, 97, 106], "manner": [3, 102], "onlin": [3, 6, 10], "find": [3, 4, 7, 16, 19, 25, 37, 40, 55, 67, 92], "particular": [3, 4, 22, 30, 40, 46, 48, 67, 91, 98, 100, 108, 110, 111], "been": [3, 15, 16, 18, 37, 48, 53, 60, 67, 70, 87, 102, 104, 105, 108, 109], "written": [3, 10, 53, 66, 71, 76, 79, 81, 83, 84, 87, 89, 93, 96, 103, 105], "documentation_pag": 3, "www": [3, 4, 19, 20, 30, 34, 37, 99, 104], "org": [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 99, 104], "html": [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104, 108], "importerror": [3, 101, 108], "build_ext": 3, "inplac": [3, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 38, 39, 42, 43, 44, 45, 49], "retri": 3, "home": [3, 11, 12, 13, 15, 16, 18, 20, 21, 28, 33, 37, 38, 40, 42, 43, 44, 45, 49], "index": [3, 4, 11, 13, 15, 16, 19, 26, 27, 30, 31, 33, 34, 40, 48, 53, 56, 75, 83, 84, 87, 96, 103, 105, 108, 109, 110, 111], "tinker": [3, 58, 59, 61, 97], "cycl": [3, 30, 44, 104, 108], "rebuild": [3, 4], "becom": [3, 4, 7, 9, 10, 31, 32, 33, 36, 40, 109], "tediou": [3, 4], "autobuild": [3, 4], "sentenc": 3, "doe": [3, 4, 10, 13, 14, 15, 16, 19, 27, 30, 34, 40, 48, 52, 53, 55, 57, 63, 66, 71, 72, 80, 81, 82, 84, 87, 88, 92, 100, 101, 102, 105, 106, 108, 109, 110, 111, 112, 114], "def": [3, 10, 15, 16, 18, 21, 27, 44, 50, 105, 108, 112], "func": [3, 15], "arg1": 3, "arg2": 3, "summari": [3, 39, 53, 104, 108], "paramet": [3, 16, 43, 52, 53, 86, 104, 105, 108, 109], "int": [3, 26, 30, 50, 109, 114], "str": [3, 96, 108], "further": [3, 13, 15, 27, 50, 52, 53, 60, 62, 87, 98, 100, 105, 106], "breakdown": [3, 114], "variabl": [3, 4, 5, 30, 34, 49, 100, 104, 105], "markup": 3, "least": [3, 16, 31, 39, 42, 46, 67, 83, 98, 108], "head": [3, 18, 19, 20, 21, 33, 34, 53], "otherwis": [3, 4, 11, 34, 44, 55, 83, 89, 108], "parser": [3, 63, 65, 66, 69, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 91, 92, 93, 95, 99, 105, 106, 114], "render": [3, 4, 10, 48, 55, 102], "correctli": [3, 4, 60, 67, 88, 104, 105, 108], "bla": 3, "THE": 3, "versionad": 3, "properli": [3, 102, 105], "mess": [3, 15], "sometim": [3, 15, 50, 57, 60, 61, 71, 89, 105, 111, 114], "tri": [3, 61, 67, 79, 86, 109, 114], "across": [3, 12, 48, 50, 89, 94, 102, 106], "n_atom": [3, 10, 15, 26, 50, 53, 103, 105, 108, 109, 111, 114], "n_residu": [3, 37, 39, 50, 53, 109], "mathjax": 3, "latex": 3, "math": [3, 105, 109], "tag": [3, 100, 102, 105], "block": [3, 12, 16, 30, 36, 53, 85, 99], "equat": [3, 13, 14, 108], "pi": [3, 36, 113], "direct": [3, 4, 30, 46, 57, 87, 98, 105], "ident": [3, 4, 12, 16, 42, 44, 72, 87, 114], "raw": [3, 103], "prefix": [3, 4, 106], "letter": [3, 33, 83, 104], "backslash": 3, "unexpect": [3, 16], "rotat": [3, 7, 8, 9, 10, 11, 13, 14, 38, 48, 53, 104, 109, 112], "matrix": [3, 7, 8, 9, 10, 11, 12, 13, 14, 24, 34, 38, 39, 42, 44, 45, 46, 53, 104], "select": [3, 4, 6, 7, 9, 10, 11, 12, 14, 16, 17, 18, 19, 22, 25, 26, 27, 30, 31, 33, 34, 36, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 66, 98, 99, 105, 110, 114], "mathsf": [3, 13], "3x3": 3, "orthogon": [3, 7, 32, 34, 52, 81, 82], "transform": [3, 6, 7, 13, 15, 32, 33, 34, 105, 109, 111, 114], "vector": [3, 7, 13, 24, 31, 32, 33, 34, 39, 48, 50, 67, 105, 109], "mathbf": [3, 13, 14, 16, 31, 34, 36], "rightarrow": 3, "stackoverflow": [3, 48], "express": [3, 4, 13, 106], "construct": [3, 6, 7, 15, 32, 34, 99], "annot": [3, 46, 105], "quickli": [3, 26, 83, 99], "newli": [3, 102, 105], "primari": [3, 53, 98, 109], "y": [3, 12, 13, 15, 16, 19, 20, 34, 48, 49, 50, 57, 66, 81, 82, 83, 95, 106], "z": [3, 15, 16, 26, 33, 39, 48, 50, 57, 66, 81, 82, 83, 95, 104, 106, 112], "mention": 3, "entiti": 3, "versionchang": 3, "although": [3, 7, 16, 30, 48, 63, 67, 79, 82, 83, 84, 105, 111, 112], "accept": [3, 13, 30, 43, 44, 53, 105, 106, 109, 112], "assum": [3, 50, 53, 57, 60, 61, 66, 67, 68, 79, 83, 88, 100, 114], "longer": [3, 12, 27, 57, 71, 105, 106, 108], "remov": [3, 4, 28, 30, 37, 40, 53, 102, 105, 108], "futur": [3, 15, 101, 105, 108], "enclos": 3, "scope": [3, 108], "whole": [3, 42, 53, 55, 105, 108, 112], "toc": 3, "analysisbas": [3, 15, 16, 105], "ones": [3, 33, 87, 106], "overwritten": 3, "inherit": [3, 108], "distinguish": [3, 34], "minim": [3, 7, 8, 108], "demonstr": [3, 7, 8, 13, 18, 19, 26, 30], "best": [3, 12, 19, 20, 104, 108], "practic": [3, 12, 48, 105], "intent": 3, "behind": 3, "choic": [3, 4, 38, 108], "api": [3, 9, 10, 11, 13, 14, 15, 19, 22, 23, 24, 30, 31, 34, 36, 37, 38, 40, 42, 43, 44, 45, 46, 49, 85, 102, 103, 105], "promot": 3, "unifi": 3, "concis": 3, "come": [3, 53, 84, 99, 102, 108, 114], "overwrit": [3, 30, 96], "restructur": 3, "put": [3, 4, 16, 50], "amend": [3, 105], "friend": 3, "pile": 3, "onto": [3, 7, 30, 32, 33, 34, 37, 43, 44, 48, 111], "preview": 3, "ipython": [3, 4, 50, 109], "mark": [3, 30, 103, 104, 108], "oper": [3, 9, 15, 16, 30, 39, 53, 103, 105, 106], "docstr": 4, "class": [4, 7, 12, 13, 14, 15, 17, 18, 19, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 49, 53, 57, 83, 96, 98, 100, 101, 103, 105, 108, 109, 113, 114], "ensur": [4, 36, 100, 102, 103, 106, 108], "nbsphinx": 4, "dure": [4, 10, 13, 15, 19, 57, 89, 103], "doc": [4, 9, 10, 11, 13, 14, 22, 23, 24, 30, 31, 34, 36, 37, 38, 40, 42, 43, 44, 45, 46, 49, 102], "python": [4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 87, 98, 99, 100, 101, 102, 104, 105], "mean": [4, 6, 7, 8, 9, 11, 16, 19, 24, 26, 27, 30, 32, 33, 34, 39, 42, 43, 45, 48, 69, 75, 80, 84, 87, 98, 99, 100, 103, 105, 106, 108, 114], "bit": [4, 12, 105], "complex": [4, 15, 16, 28, 53, 99], "branch": [4, 82, 105, 108], "view": [4, 6, 14, 19, 30, 34, 39, 48, 50, 55, 108, 109, 114], "cell": [4, 9, 10, 11, 14, 19, 26, 34, 39, 48, 49, 50, 53, 55, 67, 81, 82, 105, 106, 108, 112], "applic": [4, 37, 58, 61, 66, 98, 114], "pull": [4, 10, 45, 70, 82, 101, 102, 105, 108, 111], "github": [4, 6, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 33, 38, 39, 43, 44, 49, 100, 102, 105], "depend": [4, 10, 16, 26, 53, 60, 61, 68, 100, 102, 104, 105, 106, 108, 112], "nglview": [4, 9, 10, 14, 19, 34, 39, 50, 52, 55, 104], "conda": [4, 7, 53, 79], "mamba": [4, 100], "micromamba": [4, 108], "yml": [4, 108], "quiet": 4, "nbextens": 4, "enabl": [4, 15, 85, 89, 94, 104, 105, 108], "sy": [4, 52], "output": [4, 10, 14, 16, 30, 34, 38, 39, 40, 42, 43, 44, 48, 53, 55, 63, 70, 72, 83, 105, 108, 112], "browser": [4, 108], "homepag": 4, "abil": [4, 105], "interact": [4, 6, 9, 10, 12, 14, 19, 26, 27, 28, 34, 36, 39, 50, 52, 55, 87, 104, 109], "viewer": 4, "jupyer": 4, "widget": [4, 9, 10, 14, 19, 34, 39, 48, 50, 55, 100], "whenev": [4, 102, 108], "advantag": 4, "determin": [4, 6, 7, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 29, 33, 34, 37, 46, 53, 57, 98, 104], "still": [4, 10, 15, 27, 60, 101, 102, 103, 105, 108], "gave": 4, "were": [4, 19, 28, 34, 67, 98, 102, 104, 105, 106, 108], "ini": 4, "sanitize_output": 4, "cfg": [4, 100], "polymers_and_membran": 4, "ipynb": [4, 43, 114], "replac": [4, 53, 100, 103, 105, 109], "regex": 4, "download": [4, 5, 6, 14, 15, 100, 102, 108], "scan": 4, "match": [4, 6, 7, 9, 10, 13, 17, 37, 44, 100, 102, 105, 106, 108], "word": [4, 37, 104], "exactli": [4, 16, 88, 109], "bar": [4, 15, 31, 100, 103, 105], "tend": 4, "correct": [4, 14, 26, 50, 53, 67, 102, 104, 105, 108], "memori": [4, 10, 11, 12, 14, 15, 26, 45, 53, 55, 56, 98, 99, 105, 108, 111, 112, 114], "locat": [4, 5, 9, 81, 82, 102, 106, 109], "allevi": 4, "regular": [4, 57, 87], "know": [4, 15, 16, 50, 53, 102, 108], "vari": [4, 37, 38, 44], "dynam": [4, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 52, 55, 99, 104, 105, 110, 111, 112, 114], "constant": [4, 26, 33, 49, 52, 66, 76, 105, 106], "won": 4, "prevent": [4, 105], "spuriou": 4, "possibl": [4, 28, 30, 46, 57, 60, 82, 99, 103, 104, 106, 108], "extra": [4, 15, 16, 30, 83, 100], "softwar": [4, 15, 42, 43, 44, 45, 100, 104, 106, 108], "program": [4, 7, 14, 30, 34, 39, 50, 53, 93, 96, 99, 100, 104], "therefor": [4, 13, 14, 15, 19, 33, 37, 42, 43, 50, 52, 53, 72, 79, 92, 95, 98, 108], "ignor": [4, 9, 10, 14, 22, 23, 24, 27, 30, 33, 34, 37, 46, 50, 52, 53, 81, 82, 84, 95, 105, 106, 114], "unless": [4, 42, 61, 87, 100, 106, 114], "Of": 4, "cours": [4, 37, 55], "occur": [4, 19], "unix": [4, 30, 106], "impli": 4, "environment": 4, "path_to_hole2": 4, "ex": [4, 30], "usual": [4, 13, 34, 53, 56, 82], "difficult": [4, 7, 19, 32, 40, 55], "emb": [4, 7, 32, 33, 55], "imag": [4, 9, 10, 12, 14, 15, 19, 22, 23, 34, 39, 50, 55, 105, 108], "edit": [4, 34, 102, 104], "conf": 4, "url": [4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "site": [4, 11, 12, 13, 15, 16, 18, 20, 21, 28, 33, 36, 37, 38, 42, 43, 44, 45, 49, 108], "site_url": 4, "person": 4, "my_user_nam": 4, "io": [4, 15, 79, 98], "macro": [4, 53, 96], "right": [4, 13, 14, 31, 40, 81, 106], "dropdown": 4, "websit": [4, 15], "publish": [4, 9, 10, 11, 12, 13, 14, 16, 21, 26, 27, 28, 30, 33, 34, 38, 39, 42, 43, 44, 45, 46, 53, 61, 102, 104], "my_branch": 4, "constantli": [4, 33], "pip": [4, 7, 53, 101, 104, 105, 108], "sphinx_autobuild": 4, "webserv": 4, "localhost": 4, "8000": [4, 83], "refresh": 4, "inconsist": [4, 105], "whitespac": [4, 83], "miss": [4, 27, 50, 57, 81, 82, 84, 101, 103, 105, 108], "carriag": 4, "perform": [4, 13, 15, 26, 43, 44, 48, 52, 85, 100, 108, 111, 112], "uninstal": 4, "offer": [5, 48, 105], "collect": [5, 6, 7, 30, 32, 34, 53, 104, 105, 112], "dataset": [5, 14, 15, 114], "primarili": 5, "workshop": 5, "interfac": [5, 26, 53], "cach": [5, 15, 100], "certain": [5, 7, 13, 17, 19, 21, 30, 40, 42, 53, 57, 61, 66, 98, 106, 108, 109, 110, 114], "figshar": [5, 14, 104], "zenodo": 5, "datadryad": 5, "upon": [5, 102], "significantli": [5, 13, 100, 105], "adk": [5, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55], "fetch_adk_equilibrium": [5, 14, 15], "descr": 5, "mdanalysis_data": 5, "environ": [5, 79, 100, 104], "chosen": [5, 27, 42, 44, 57, 112], "perman": [5, 111], "echo": 5, "get_data_hom": 5, "And": [5, 55, 96, 100], "clear_data_hom": 5, "found": [5, 19, 26, 28, 30, 31, 37, 42, 53, 103], "jupyt": [6, 9, 10, 13, 26, 52, 55, 100, 104], "notebook": [6, 9, 10, 11, 26, 27, 34, 48, 52, 53, 55, 104, 114], "binder": 6, "quick": [6, 12, 16], "ad": [6, 34, 42, 44, 57, 60, 85, 98, 99, 105, 107, 108, 114], "align": [6, 12, 13, 34, 42, 44, 45, 53, 57, 83, 105, 109, 112], "rm": [6, 11, 12, 13, 14, 26, 27, 30, 53, 110], "fit": [6, 14, 27, 31, 39, 42, 46, 48, 53, 56, 112], "structur": [6, 8, 10, 11, 12, 16, 17, 19, 20, 21, 30, 34, 37, 38, 39, 41, 46, 52, 56, 58, 59, 61, 96, 97, 103, 104, 106, 108, 111, 114], "calcul": [6, 7, 8, 9, 10, 11, 16, 18, 19, 25, 33, 34, 35, 39, 41, 46, 47, 53, 55, 57, 61, 100, 104, 105, 109], "squar": [6, 7, 8, 9, 11, 12, 15, 16, 24, 38, 104, 105], "deviat": [6, 7, 8, 9, 11, 30, 37, 39, 42, 44, 83, 104], "pairwis": [6, 7, 8, 13, 14, 19, 39, 40], "rmsd": [6, 7, 8, 9, 10, 11, 14, 30, 33, 41, 46, 57, 104, 110], "fluctuat": [6, 7, 8, 13, 19, 27, 34], "contact": [6, 99, 104], "wise": [6, 7, 17, 23, 53], "fraction": [6, 7, 17, 18, 20, 21, 76], "nativ": [6, 7, 15, 17, 20, 21, 63, 100, 104], "q1": [6, 7, 17, 18, 19, 21], "q2": [6, 7, 17, 18, 19, 21], "cutoff": [6, 7, 17, 18, 20, 26, 38, 57, 106], "write": [6, 7, 9, 11, 12, 14, 15, 17, 19, 20, 21, 22, 23, 24, 30, 34, 46, 48, 50, 52, 61, 62, 64, 68, 78, 90, 99, 105, 111, 113, 114], "harmon": [6, 7, 19, 20, 33, 41, 87, 104], "ensembl": [6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 41, 46, 48, 49, 50, 55, 104], "cluster": [6, 7, 15, 41, 44, 46], "dimens": [6, 22, 23, 26, 29, 37, 41, 49, 50, 55, 67, 81, 82, 104, 105, 106, 111, 112, 114], "reduct": [6, 34, 41, 104], "converg": [6, 7, 12, 13, 38, 41, 42, 104], "elast": [6, 7, 35], "network": [6, 7, 35], "averag": [6, 7, 8, 16, 26, 27, 31, 34, 35, 39, 40, 42, 44, 45, 49, 55], "radial": [6, 7, 35], "rdf": [6, 7, 35, 36, 105], "helix": [6, 7, 35, 104, 105], "princip": [6, 7, 32, 33, 43, 44, 104, 109], "compon": [6, 7, 32, 33, 43, 44, 104, 108], "non": [6, 7, 13, 19, 32, 36, 57, 60, 88, 105, 106], "linear": [6, 7, 31, 32, 34], "diffus": [6, 7, 32, 34, 104], "polym": [6, 104], "membran": [6, 26, 27, 28, 30], "persist": [6, 7, 10, 15, 26, 29, 53, 55, 111], "pore": [6, 7, 29, 104], "hole2": [6, 7, 29, 105], "volumetr": 6, "charg": [6, 7, 13, 28, 47, 48, 61, 66, 81, 82, 83, 86, 87, 92, 97, 105, 106, 109, 114], "densiti": [6, 7, 36, 42, 44, 47, 52, 57, 105], "axi": [6, 7, 10, 12, 15, 16, 22, 30, 34, 39, 44, 47, 48, 50, 55, 71, 109, 112], "solvent": [6, 7, 40, 47, 50, 114], "around": [6, 7, 13, 14, 16, 19, 22, 26, 28, 30, 34, 36, 40, 42, 47, 50, 52, 53, 99, 100, 106, 114], "data": [7, 15, 19, 20, 27, 32, 33, 34, 37, 39, 42, 43, 44, 46, 53, 55, 56, 58, 59, 61, 81, 82, 83, 84, 85, 89, 94, 95, 97, 98, 99, 103, 105, 109, 110, 111, 112, 113], "rang": [7, 15, 16, 30, 33, 34, 36, 40, 44, 50, 53, 57, 101, 106, 109], "algorithm": [7, 8, 9, 10, 11, 12, 13, 14, 16, 19, 33, 34, 39, 41, 42, 43, 44, 48, 52, 53, 60, 100, 104], "quantiti": [7, 8, 19, 53, 98, 105, 113], "uniqu": [7, 26, 34, 40, 57, 105, 108], "bundl": 7, "contribut": [7, 13, 36, 99, 102, 105, 108], "variou": [7, 26, 85, 105], "research": [7, 15, 19, 20, 104], "citat": 7, "parallel": [7, 100, 105], "paralleliz": 7, "encor": [7, 41, 42, 43, 44, 45, 104, 105], "hole": [7, 100, 104, 105], "yourself": [7, 30, 37, 45, 48], "align_structur": [7, 8], "align_trajectory_first": [7, 8], "align_trajectori": [7, 8], "rmsf": [7, 8, 12, 13], "sens": [7, 8, 84, 108, 109], "fast": [7, 8, 9, 10, 11, 12, 13, 14, 15, 33, 53, 79, 99, 103, 104], "qcp": [7, 8, 9, 10, 11, 12, 13, 14, 33], "the05": [7, 8, 9, 10, 11, 12, 13, 14, 33, 104], "lat09": [7, 8, 9, 10, 11, 14, 104], "cite": [7, 8, 9, 10, 11, 12, 13, 14, 16, 26, 27, 28, 30, 33, 34, 38, 39, 42, 43, 44, 45, 46, 53, 104], "rapidli": [7, 17, 37], "retain": [7, 17, 19, 21, 85], "insight": [7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104], "fold": [7, 17, 19, 20, 104], "movement": [7, 13, 17, 19, 34, 57], "3n": [7, 32, 34, 41], "dimension": [7, 12, 32, 33, 41, 44, 45, 104], "tpb": [7, 41, 42, 43, 44, 45, 104], "estim": [7, 12, 41, 45], "measur": [7, 12, 13, 16, 30, 31, 41, 48, 66, 108], "pair": [7, 26, 28, 30, 36, 40, 41, 44, 46, 105], "transit": [7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 53, 55, 104], "reduc": [7, 11, 30, 33, 41, 42, 43, 44, 85, 94, 100], "remain": [7, 13, 16, 19, 24, 27, 32, 49, 53, 57, 104, 105, 108, 111], "extract": [7, 26, 32, 53, 57, 98, 104], "motion": [7, 32, 34, 38], "physic": [7, 32, 33, 34, 104], "state": [7, 12, 13, 14, 15, 19, 32, 33, 34, 38, 53, 102, 103, 104, 111], "represent": [7, 32, 48, 67, 76, 96, 105, 112, 114], "explor": [7, 15, 32], "techniqu": [7, 32, 33, 34], "varianc": [7, 32, 34, 42, 43], "largest": [7, 32, 34, 46, 108], "uncorrel": [7, 27, 32, 34], "success": [7, 32, 34, 46], "essenti": [7, 32, 33, 34, 104, 108], "subspac": [7, 32, 34, 43], "visualis": [7, 9, 10, 19, 22, 23, 24, 32, 33, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 50, 55, 99], "repres": [7, 12, 13, 15, 20, 27, 32, 33, 34, 38, 39, 40, 42, 43, 44, 48, 50, 53, 57, 60, 67, 103, 109], "neighour": [7, 32, 33], "geometri": [7, 13, 23, 30, 32, 33, 37, 39, 48, 50, 53, 104, 106, 109, 112], "intrins": [7, 32, 33], "manifold": [7, 32, 33], "suitabl": [7, 16, 32, 33, 49], "sampl": [7, 9, 10, 11, 12, 13, 18, 19, 20, 21, 30, 32, 33, 34, 39, 42, 43, 44, 53, 104], "replica": [7, 32, 33], "exchang": [7, 32, 33], "simul": [7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 51, 53, 55, 57, 58, 61, 67, 68, 85, 104], "region": [7, 14, 32, 33, 37, 43], "disconnect": [7, 32, 33], "meaning": [7, 32, 33, 53, 98, 114], "cannot": [7, 15, 32, 33, 37, 60, 68, 81, 82, 83, 103, 108, 109], "approxim": [7, 32, 33], "pca": [7, 32, 34, 43, 44, 105], "explicit": [7, 32, 33, 109], "eigenvector": [7, 32, 33, 34, 38], "immedi": [7, 15, 19, 32, 33, 102, 108], "hydrogen_bond": [7, 25], "basic": [7, 18, 19, 21, 25, 27, 28, 53, 65, 87], "advanc": [7, 15, 25, 26, 27, 46, 100], "lifetim": [7, 25, 26, 28, 89], "decemb": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 104], "2022": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 105], "minimum": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 55, 61, 102, 105, 108], "madwb11": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "glb": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "ncr18": [9, 10, 55, 104], "minimis": [9, 10, 11, 12, 13, 14, 42, 43, 52], "crd": [9, 10, 12, 13, 45, 46, 52, 53, 58, 59, 61, 88, 97, 105, 109], "dcd2": [9, 10, 12, 16, 38, 42, 44, 45, 46], "nv": [9, 10, 14, 19, 34, 39, 48, 50, 55], "suppress": [9, 10, 14, 22, 23, 24, 27, 30, 34, 46, 50, 52, 53], "filterwarn": [9, 10, 14, 22, 23, 24, 27, 30, 34, 46, 50, 52, 53], "adenyl": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 53, 55, 104], "kinas": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 53, 55, 104], "phosophotransferas": [9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55], "enzym": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 53, 55], "bdpw09": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "close": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 33, 34, 37, 39, 40, 42, 43, 44, 45, 46, 48, 50, 53, 55, 104], "adk_open": [9, 10, 12, 19], "adk_clos": [9, 10, 12, 19], "adk_open_view": [9, 19], "show_mdanalysi": [9, 10, 14, 19, 34, 39, 48, 50, 55], "adk_closed_view": [9, 19], "even": [9, 15, 18, 22, 48, 53, 60, 61, 66, 68, 102, 104, 105, 106, 108, 109, 110, 111], "obviou": [9, 10], "posit": [9, 10, 11, 13, 14, 15, 16, 19, 20, 21, 23, 24, 26, 34, 38, 45, 48, 52, 66, 67, 76, 103, 105, 106, 108, 109, 110, 111, 112], "merged_view": [9, 10], "mobil": [9, 11, 13, 14], "target": [9, 13, 23, 100, 105], "old_rmsd": 9, "new_rmsd": 9, "By": [9, 19, 26, 30, 42, 44, 49, 61, 66, 68, 99, 106], "match_atom": [9, 10], "attempt": [9, 81, 105], "712154435976014": 9, "817293751703919": 9, "aligned_view": 9, "could": [9, 13, 16, 18, 23, 24, 34, 48, 88, 109], "alpha": [9, 11, 13, 14, 19, 20, 22, 23, 24, 39, 40, 48, 50, 53, 55, 60, 67, 81, 82, 103, 106], "carbon": [9, 11, 13, 14, 19, 20, 22, 23, 24, 31, 36, 40, 60, 106], "atomist": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104], "backbon": [9, 11, 13, 14, 33, 34, 37, 45, 53, 98, 106], "somewhat": [9, 34], "contriv": 9, "214": [9, 13, 24, 27, 37, 46, 50, 53], "991465038265208": 9, "603704620787127": 9, "shifted_aligned_view": 9, "temporarili": 9, "flip": 9, "back": [9, 48, 52, 53, 62, 79, 80, 86, 102, 103, 108, 110, 111, 112, 113], "lt": [9, 10, 12, 13, 14, 15, 16, 18, 22, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 42, 43, 44, 46, 48, 49, 50, 52, 53], "timestep": [9, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 38, 39, 42, 43, 44, 45, 49, 53, 55, 57, 61, 81, 89, 95, 105, 106, 108, 110, 111, 112, 114], "101": [9, 82, 98], "gt": [9, 10, 12, 13, 14, 15, 16, 18, 22, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 42, 43, 44, 46, 48, 49, 50, 52, 53], "reset_view": 9, "save": [9, 10, 13, 14, 15, 16, 19, 26, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 88, 96, 105, 108], "from_file_view": 9, "oliv": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "beckstein": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 104], "elizabeth": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "j": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 104, 113], "den": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 104], "juan": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "perilla": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104], "thoma": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "woolf": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 104], "zip": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104], "unzip": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104], "journal": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "biologi": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "394": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 78, 104], "160": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104], "176": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 82, 104], "novemb": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "2009": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 53, 55, 104], "00107": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "linkinghub": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "elsevi": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "pii": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "s0022283609011164": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "doi": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 104], "1016": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104], "jmb": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104], "09": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104, 113], "009": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104], "richard": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "gower": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "max": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 55, 66, 104, 105], "jonathan": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "barnoud": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "tyler": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "reddi": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "manuel": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "melo": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "sean": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "seyler": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "jan": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "doma\u0144ski": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "david": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 55, 104], "dotson": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "s\u00e9bastien": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "buchoux": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "ian": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "kennei": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "rapid": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "proceed": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 100, 104], "15th": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "scienc": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "confer": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "98": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104, 111], "105": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 103, 104], "2016": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 87, 104], "00152": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "scipy2016": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "oliver_beckstein": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "25080": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "majora": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "629e541a": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "00e": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "pu": [9, 10, 11, 14, 53, 104], "liu": [9, 10, 11, 14, 53, 104], "dimitri": [9, 10, 11, 14, 104], "k": [9, 10, 11, 14, 24, 30, 33, 40, 42, 43, 48, 52, 53, 57, 104], "agrafioti": [9, 10, 11, 14, 53, 104], "dougla": [9, 10, 11, 12, 13, 14, 33, 53, 104], "theobald": [9, 10, 11, 12, 13, 14, 33, 53, 104], "optim": [9, 10, 11, 13, 14, 27, 53, 104], "macromolecular": [9, 10, 11, 14, 46, 53, 59, 104], "superposit": [9, 10, 11, 13, 14, 53, 104], "chemistri": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 55, 104], "wilei": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 55, 104], "1002": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 52, 53, 55, 104], "jcc": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 52, 53, 55, 104], "21439": [9, 10, 11, 14, 104], "naveen": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 55, 104], "michaud": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 52, 53, 55, 104], "agraw": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 52, 53, 55, 104], "2319": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 52, 53, 55, 104], "2327": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 52, 53, 55, 104], "juli": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 55, 104], "2011": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 52, 53, 55, 104], "00778": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 55, 104], "21787": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 52, 53, 55, 104], "hai": [9, 10, 52, 55, 104], "nguyen": [9, 10, 52, 55, 104], "alexand": [9, 10, 52, 55, 104], "rose": [9, 10, 52, 55, 104], "graphic": [9, 10, 30, 52, 55, 96, 104], "bioinformat": [9, 10, 34, 37, 52, 55, 104], "1241": [9, 10, 52, 55, 104], "1242": [9, 10, 52, 55, 104], "april": [9, 10, 39, 55, 104], "2018": [9, 10, 26, 27, 28, 34, 52, 55, 87, 104], "00024": [9, 10, 55, 104], "academ": [9, 10, 19, 20, 55, 104], "oup": [9, 10, 19, 20, 55, 104], "articl": [9, 10, 14, 19, 20, 30, 37, 42, 43, 44, 45, 55, 104], "4721781": [9, 10, 55, 104], "1093": [9, 10, 19, 20, 52, 55, 104], "btx789": [9, 10, 52, 55, 104], "quaternion": [9, 10, 11, 12, 13, 14, 33, 53, 104], "characterist": [9, 10, 11, 12, 13, 14, 33, 53, 104], "polynomi": [9, 10, 11, 12, 13, 14, 33, 53, 104], "acta": [9, 10, 11, 12, 13, 14, 33, 53, 104], "crystallographica": [9, 10, 11, 12, 13, 14, 33, 53, 104], "foundat": [9, 10, 11, 12, 13, 14, 33, 104], "crystallographi": [9, 10, 11, 12, 13, 14, 33, 104], "61": [9, 10, 11, 12, 13, 14, 30, 33, 40, 53, 57, 81, 82, 98, 104], "478": [9, 10, 11, 12, 13, 14, 33, 53, 104], "480": [9, 10, 11, 12, 13, 14, 33, 53, 83, 104], "2005": [9, 10, 11, 12, 13, 14, 33, 53, 104], "00127": [9, 10, 11, 12, 13, 14, 33, 104], "iucr": [9, 10, 11, 12, 13, 14, 33, 104], "cgi": [9, 10, 11, 12, 13, 14, 19, 20, 33, 104], "paper": [9, 10, 11, 12, 13, 14, 33, 34, 53, 104], "s0108767305015266": [9, 10, 11, 12, 13, 14, 33, 104], "1107": [9, 10, 11, 12, 13, 14, 33, 104], "alignto": [10, 11], "effici": [10, 11, 13, 26, 27, 89, 94, 99, 111], "entir": [10, 11, 13, 30, 36, 37, 40, 53, 103, 106, 108, 114], "filenam": [10, 11, 14, 30, 57, 96, 103], "merged1": 10, "merged1_view": 10, "superpos": 10, "renam": [10, 57], "colour": [10, 14, 30, 48, 108], "merged2": 10, "merged2_view": 10, "feasibl": 10, "devic": [10, 103], "accomplish": [10, 30, 48], "in_memori": [10, 11, 12, 14, 34, 55, 103, 114], "merged3": 10, "ourselv": [10, 16, 50], "analysisfromfunct": [10, 15, 16], "np": [10, 12, 15, 16, 18, 19, 20, 21, 23, 24, 26, 27, 28, 30, 33, 34, 37, 40, 42, 43, 44, 45, 46, 48, 49, 50, 55, 57, 101, 103, 105, 108, 112, 114], "memoryread": [10, 50, 103, 105, 114], "copy_coord": 10, "aligned_coord": 10, "timeseri": [10, 15, 16, 18, 19, 20, 21, 53, 57, 105], "shape": [10, 12, 13, 16, 19, 21, 23, 24, 26, 27, 30, 31, 33, 34, 37, 39, 40, 43, 44, 45, 48, 50, 53, 109], "3341": [10, 15, 53, 96, 98, 103], "contrast": 10, "adk_coord": 10, "stack": [10, 108], "adk_traj_coord": 10, "join": [10, 36, 99, 108], "hstack": 10, "merged_coord": 10, "load_new": [10, 19, 34, 103, 114], "format": [10, 13, 14, 19, 21, 22, 23, 30, 31, 33, 34, 36, 37, 40, 42, 43, 44, 45, 48, 52, 53, 58, 60, 62, 64, 65, 66, 67, 69, 70, 71, 72, 73, 76, 78, 80, 83, 84, 85, 86, 88, 89, 91, 92, 93, 94, 95, 97, 98, 99, 102, 104, 105, 106, 111, 113, 114], "6682": 10, "m2_view": 10, "contrib": [10, 14, 34, 39, 48, 55], "movi": [10, 14, 34, 39, 48, 55], "moviemak": [10, 14, 34, 39, 48, 55], "gif": [10, 14, 34, 39, 48, 55], "moviepi": 10, "4th": [10, 34, 39, 48], "render_param": [10, 14, 34, 39, 48, 55], "factor": [10, 34, 39, 42, 48, 55, 61, 81, 82, 109, 113], "higher": [10, 13, 33, 42, 105], "qualiti": [10, 12, 14, 34, 39, 48, 55, 85], "writer": [10, 53, 62, 64, 65, 66, 67, 68, 71, 73, 78, 79, 81, 82, 83, 89, 90, 94, 95, 96, 103, 105, 108, 111], "xyz": [10, 50, 53, 58, 59, 61, 73, 91, 97, 98, 103, 109], "w": [10, 19, 20, 30, 33, 34, 37, 53, 66, 96, 103, 104, 111], "aligntraj": [11, 12, 14, 34, 45], "ref": [11, 13, 14, 19, 30, 37, 46, 108], "pbarletta": [11, 12, 13, 15, 16, 18, 20, 21, 28, 33, 37, 38, 40, 42, 43, 44, 45, 49], "mambaforg": [11, 12, 13, 15, 16, 18, 20, 21, 28, 33, 37, 38, 40, 42, 43, 44, 45, 49], "python3": [11, 12, 13, 15, 16, 18, 20, 21, 28, 33, 37, 38, 40, 42, 43, 44, 45, 49, 108], "165": [11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 38, 39, 42, 43, 44, 45, 49], "deprecationwarn": [11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 38, 39, 40, 42, 43, 44, 45, 49, 108], "dcdreader": [11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 38, 39, 42, 43, 44, 45, 49, 67, 68], "independ": [11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 38, 39, 42, 43, 44, 45, 49, 57, 101], "reader": [11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 38, 39, 42, 43, 44, 45, 49, 53, 56, 57, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 99, 105, 108, 114], "behavior": [11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 33, 38, 39, 43, 44, 49], "3889": [11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 33, 38, 39, 43, 44, 49], "might": [11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 26, 33, 38, 39, 43, 44, 49, 52, 67, 79, 100, 106], "unalign": 11, "mobile_ca": 11, "ref_ca": 11, "unaligned_rmsd": 11, "2f": [11, 26, 27, 30, 53], "84": [11, 30], "enough": [11, 12, 14, 37, 57], "reload": [11, 57], "uncom": [11, 14, 48], "aligned_to_first_fram": 11, "minorli": 11, "aligned_rmsd": 11, "81": [11, 30, 98, 106], "procedur": [11, 39, 102], "except": [11, 15, 37, 43, 44, 81, 82, 101, 103, 109, 113], "aligned_rmsd_3": 11, "73": [11, 16, 21, 30, 50, 87], "72": [11, 53], "1d": [12, 43], "diffusionmap": [12, 33], "pyplot": [12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 53, 57], "plt": [12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 53, 57], "mislead": 12, "think": [12, 16, 26, 53, 56], "fact": 12, "2d": [12, 13, 14, 43], "gain": 12, "diagon": 12, "plot": [12, 15, 16, 26, 27, 31, 33, 34, 36, 38, 39, 40, 43, 49, 53, 57, 105], "zero": [12, 16, 24, 30, 50, 60, 92], "along": [12, 15, 19, 20, 22, 30, 42, 44, 46, 49], "occup": [12, 14, 61, 66, 81, 82, 97, 105, 109], "revisit": 12, "earlier": [12, 16, 105, 108], "live": 12, "quantif": 12, "uncertainti": 12, "grossfield": 12, "et": [12, 26, 27, 28, 53], "al": [12, 26, 27, 28, 53], "distancematrix": 12, "necessarili": [12, 18, 44, 69], "anywher": 12, "begin": [12, 16, 24, 30, 114], "metric": [12, 13, 18, 19, 33, 42, 43, 44, 45, 46], "dist_matrix": 12, "n_frame": [12, 15, 16, 26, 30, 34, 37, 39, 53, 105], "102": [12, 42, 44, 45, 46, 98], "heatmap": [12, 24, 46], "heat": [12, 46, 48, 52], "plotli": 12, "holoview": 12, "imshow": [12, 23, 42, 44, 45, 48], "cmap": [12, 109], "viridi": 12, "xlabel": [12, 14, 15, 16, 18, 23, 24, 26, 27, 30, 31, 34, 36, 37, 38, 39, 40, 48, 53, 57], "ylabel": [12, 14, 15, 16, 19, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 36, 37, 38, 39, 40, 48, 57], "colorbar": [12, 23, 24, 42, 44, 45, 48], "label": [12, 13, 14, 15, 16, 22, 23, 24, 27, 37, 38, 42, 43, 44, 45, 46, 50, 99, 102], "aa": [12, 13, 14, 26, 30, 48, 107], "0x7fd0e5ddcc40": 12, "finicki": 12, "popul": [12, 16, 42, 105], "prmsd": 12, "frame_open": 12, "enumer": [12, 30, 42, 44], "ref_fram": [12, 13, 14], "3rd": 12, "column": [12, 13, 16, 18, 19, 20, 21, 26, 33, 34, 50, 53, 81, 82, 83, 84, 91, 93, 103, 105, 108], "0x7fd0e5c7a850": 12, "pd": [13, 15, 16, 18, 19, 20, 21, 26, 33, 34, 49, 53], "necessari": [13, 14, 16, 21, 26, 30, 50, 57, 102, 105, 106], "displai": [13, 26, 46, 50, 53, 103, 104], "three": [13, 14, 16, 19, 22, 23, 26, 34, 42, 44, 49, 50, 83, 105, 108, 109, 114], "lid": [13, 14, 22, 23, 50], "atp": [13, 14, 22, 23], "bind": [13, 14, 22, 23, 105], "nmp": [13, 14, 22, 23, 50], "amp": [13, 14, 22, 23], "move": [13, 14, 22, 40, 48, 53, 55, 101, 105, 108, 111, 112], "quantifi": [13, 14, 21, 23, 46, 104], "1ake": 13, "dissimilar": 13, "elementwis": 13, "sum": [13, 14, 15, 16, 18, 19, 21, 27, 55, 104, 108, 109], "sqrt": [13, 14, 15, 16], "frac": [13, 16, 19, 24, 27, 31, 109, 113], "sum_": [13, 36], "_i": [13, 14, 16, 31, 34, 36], "translat": [13, 38, 48, 50, 55, 105, 109, 112], "min_": [13, 46], "left": [13, 14, 31, 44, 106, 108], "cdot": [13, 31, 34, 60], "_": [13, 26, 31, 44, 48, 87], "frequent": [13, 14, 26, 57, 100], "overal": [13, 16, 19, 27, 108], "initi": [13, 14, 16, 19, 48, 108, 113], "suffer": 13, "degeneraci": 13, "With": [13, 34, 50, 103, 109], "side": [13, 14, 37, 104, 108], "chain": [13, 14, 37, 50, 81, 82, 83, 96, 104, 105, 109, 112], "investig": [13, 34], "scale": [13, 15, 19, 20, 33, 76, 104], "amid": 13, "w_i": 13, "weights_groupselect": 13, "keyword": [13, 16, 18, 19, 22, 23, 28, 30, 36, 37, 42, 43, 44, 53, 61, 62, 68, 81, 89, 93, 94, 96, 103, 105, 107, 114], "angstrom": [13, 20, 22, 23, 24, 30, 36, 40, 42, 48, 49, 50, 52, 63, 66, 79, 81, 82, 88, 106, 110, 112, 113], "amino": [13, 37, 104, 105], "acid": [13, 18, 19, 20, 21, 26, 27, 28, 37, 53, 104, 105], "isn": [13, 50], "center": [13, 15, 16, 23, 24, 26, 30, 36, 40, 50, 53, 54, 105, 106, 109, 112], "superimpos": 13, "823686867261616": 13, "groupselect": [13, 53], "60": [13, 36, 40, 46, 50, 57, 81, 82, 110], "121": [13, 39, 46, 50, 52], "122": [13, 14, 22, 23, 50, 82, 98], "159": [13, 14, 22, 23, 50, 98], "59": [13, 14, 16, 22, 23, 50, 57], "0x7f2e830164f0": 13, "row": [13, 16, 26, 43, 45, 53], "guess": [13, 28, 50, 53, 57, 61, 65, 67, 81, 92, 97, 103, 105, 109], "third": [13, 53], "few": [13, 15, 34, 48, 100, 108, 112], "easili": [13, 15, 16, 24, 30, 34, 39, 43, 53, 55, 99, 101, 109], "turn": [13, 16, 18, 33, 34, 39, 46, 53, 57, 106, 108], "datafram": [13, 16, 18, 19, 20, 21, 26, 33, 34, 53], "df": [13, 16, 26, 33, 34, 46], "000000": [13, 16, 18, 19, 20], "834344e": [13, 53], "07": [13, 38, 50, 53, 104], "921486e": 13, "08": [13, 26, 50, 53, 57], "197000e": 13, "276497e": 13, "636592e": [13, 53], "01": [13, 30, 36, 53, 104], "550181e": 13, "871915e": 13, "745572e": 13, "419340e": [13, 53], "754418e": 13, "940994e": 13, "270191e": 13, "743983e": [13, 53], "739184e": 13, "010261e": 13, "00": [13, 30, 36, 42, 53, 78, 82, 98, 109], "795031e": 13, "588600e": [13, 53], "318859e": 13, "168397e": 13, "612989e": 13, "93": [13, 16, 27, 30, 104], "999992": [13, 16], "817898e": 13, "504430e": 13, "143376e": 13, "029266e": 13, "94": [13, 16, 98], "804211e": 13, "480681e": 13, "141134e": 13, "029879e": 13, "95": [13, 16, 27], "807987e": 13, "508946e": 13, "137593e": 13, "031958e": 13, "96": [13, 16, 27, 30, 34, 50, 104], "999991": [13, 16], "821205e": 13, "498081e": 13, "139156e": 13, "037768e": 13, "97": [13, 16, 27, 30, 104], "820322e": 13, "507119e": 13, "138474e": 13, "036821e": 13, "ax": [13, 16, 23, 24, 33, 37, 38, 39, 42, 44, 45, 46, 48, 49, 53, 109], "set_ylabel": [13, 16, 23, 24, 38, 43, 44], "argument": [13, 15, 16, 18, 19, 27, 30, 33, 37, 42, 44, 48, 50, 53, 61, 66, 67, 81, 88, 89, 94, 95, 96, 103, 105, 106, 108, 109, 112, 114], "incorpor": 13, "0x7f2e80561610": 13, "former": [13, 52, 108], "latter": [13, 45, 108], "none": [13, 15, 16, 26, 28, 30, 34, 37, 46, 50, 52, 57, 92, 98, 105, 109, 114], "unweight": [13, 15, 16], "r_mass": 13, "0x7f2e804833d0": 13, "df_mass": 13, "ax_mass": 13, "previou": [13, 19, 30, 105], "graph": [13, 15], "r_charg": 13, "0x7f2e80483490": 13, "doesn": [13, 50, 92, 96, 98], "potenti": [13, 19, 52, 57, 79, 87, 102, 105], "infer": [13, 19, 105], "wherea": [13, 14, 33, 38, 39, 53, 103], "seem": [13, 44], "convent": [13, 15, 22, 23, 60, 66, 67, 102, 105], "shown": [13, 16, 30, 34, 37, 48, 50, 53, 89, 113], "df_charg": 13, "ax_charg": 13, "mdanalysisdata": [14, 15, 100], "equilibrium": [14, 52], "sb17": [14, 104], "wonder": 14, "flexibl": [14, 15, 16, 23, 30, 59, 63, 85, 99, 104, 105], "langl": [14, 27, 31, 36], "rangl": [14, 27, 31, 36], "rho_i": 14, "diverg": [14, 42, 43, 44, 45], "rsmf": 14, "reveal": 14, "area": [14, 26, 37, 42, 108], "carri": [14, 48], "averagestructur": 14, "fly": [14, 111, 114], "presum": 14, "aligned_traj": 14, "underflow": 14, "overflow": [14, 105], "wel62": [14, 104], "c_alpha": 14, "inde": [14, 19, 44], "axvspan": [14, 22], "zorder": [14, 22], "color": [14, 22, 30, 37, 48], "orang": [14, 22], "green": [14, 15, 22, 102, 108], "legend": [14, 15, 16, 19, 20, 22, 27, 30, 37, 38, 43, 44], "0x13a476d30": 14, "identifi": [14, 26, 28, 42, 81, 82, 92], "commonli": [14, 50, 78, 98], "temperatur": [14, 26, 52, 57, 81, 82], "known": [14, 102], "vmd": [14, 34, 39, 53, 60, 67, 81, 84, 93, 95, 96, 105], "tempfactor": [14, 61, 65, 81, 82, 97, 105, 109], "add_topologyattr": [14, 50, 109, 114], "empti": [14, 50, 83, 105, 106, 109, 114], "r_valu": 14, "rainbow": 14, "scheme": [14, 15, 42, 44, 102], "purpl": 14, "red": [14, 108], "update_represent": 14, "color_schem": [14, 50], "bfactor": [14, 66, 87, 105, 106], "100th": 14, "highest": [14, 34, 40, 48, 50], "icod": [14, 61, 81, 82, 97, 106, 109], "rmsf_tempfactor": 14, "benchmark": [14, 104, 105], "june": [14, 27, 33, 104], "2017": [14, 52, 104], "00002": [14, 104], "molecular_dynamics_trajectory_for_benchmarking_mdanalysi": [14, 104], "5108170": [14, 104], "6084": [14, 104], "m9": [14, 104], "v1": [14, 104], "welford": [14, 104], "technometr": [14, 104], "419": [14, 30, 98, 104], "420": [14, 98, 104], "august": [14, 104], "1962": [14, 104], "amstat": [14, 104], "tandfonlin": [14, 104], "ab": [14, 34, 36, 40, 104, 106], "1080": [14, 39, 104], "00401706": [14, 104], "10490022": [14, 104], "exascal": 15, "barrier": 15, "increasingli": 15, "volum": [15, 36, 40, 49, 52, 57], "md": [15, 53, 102, 105, 110, 113], "whilst": [15, 102, 105], "framework": [15, 99, 108], "task": [15, 48, 53, 99, 108, 111], "plai": 15, "pivot": 15, "role": 15, "acceler": 15, "solut": [15, 34, 79], "illustr": [15, 28, 33, 48], "en": [15, 30, 57, 104], "readthedoc": 15, "adk_equilibrium": 15, "n_job": 15, "thread": 15, "cpu_count": 15, "power": [15, 53, 98], "pc": [15, 34, 44, 70], "laptop": 15, "desktop": 15, "phosopho": 15, "transferas": 15, "4187": 15, "insid": [15, 53, 96, 101, 108], "implicitli": 15, "explicitli": [15, 30, 53, 61, 66, 88, 101, 114], "radgyr": [15, 16, 111], "total_mass": [15, 16, 53, 109], "center_of_mass": [15, 16, 23, 24, 53, 55, 60, 108, 109], "ri_sq": [15, 16], "sq": [15, 16], "sq_x": [15, 16], "sq_y": [15, 16], "sq_z": [15, 16], "sq_r": [15, 16], "weight": [15, 16, 26, 27, 30, 34, 38, 45, 46, 48, 65, 112], "rog_sq": [15, 16], "append": [15, 21, 26, 27, 50, 52, 53, 96, 98, 102], "asarrai": 15, "col": [15, 16, 34], "\u00e5": [15, 16, 19, 26, 28, 38, 48, 53, 67, 83, 113], "frame_index": 15, "appropri": [15, 19, 36, 57, 68, 96, 103, 106, 108], "parallelis": 15, "radgyr_per_fram": 15, "pool": 15, "worker": [15, 105], "gather": [15, 30], "functool": [15, 112], "suppli": [15, 61, 68], "etc": [15, 50, 61, 87, 92, 102, 105, 114], "job": [15, 42, 44], "worker_pool": 15, "run_per_fram": 15, "frame_valu": 15, "arang": [15, 23, 37, 42, 44, 45], "analyt": 15, "util": [15, 93, 108], "hpc": 15, "schedul": [15, 105], "synchron": 15, "wrap": [15, 48, 105, 109, 112], "delai": 15, "mimic": 15, "loop": [15, 16, 55, 108, 111], "examin": [15, 33, 50], "queue": 15, "wait": [15, 102], "submiss": 15, "comar": 15, "multiprocss": 15, "downsid": 15, "focus": [15, 99], "multicor": 15, "hard": [15, 79, 106], "multimachin": 15, "config": [15, 58, 59, 61, 97, 109], "0x7f8bf93611c0": 15, "slow": [15, 79, 102], "down": [15, 100, 106], "diagnost": 15, "dashboard": 15, "valuabl": 15, "client": 15, "n_worker": 15, "tcp": 15, "127": 15, "35433": 15, "8787": 15, "gb": [15, 57], "job_list": 15, "input": [15, 23, 48, 58, 59, 61, 63, 68, 87, 97, 105, 109, 112, 114], "associ": [15, 33, 34, 38, 44, 50, 52, 53, 57, 98, 104, 105, 109, 111], "timestamp": 15, "awar": [15, 108], "accordingli": [15, 102, 111], "though": [15, 18, 48, 68], "stream": 15, "aforement": 15, "pickl": [15, 26, 105], "besid": 15, "signific": [15, 22, 83, 100, 105, 114], "amount": [15, 102, 108], "overhead": 15, "comprehens": [15, 98], "thousand": 15, "sfpg": [15, 104], "cc": [15, 34], "BY": 15, "syntax": [15, 52, 98, 108], "decor": [15, 108], "analyze_block": 15, "blockslic": 15, "kwarg": [15, 18, 19, 57, 105], "stop": [15, 16, 26, 33, 42, 53, 105, 111], "n_block": 15, "evenli": 15, "divid": [15, 26, 33, 43, 50], "balanc": 15, "realist": 15, "n_frames_per_block": 15, "2093": 15, "4000": 15, "analyz": [15, 66], "pipelin": [15, 105, 108], "conveni": [15, 16, 30, 31, 37, 46, 53, 57], "num_cor": 15, "rog_1": 15, "rog_2": 15, "rog_3": 15, "rog_4": 15, "analysis_ensembl": 15, "run_analysi": 15, "pie": [15, 114], "similiar": 15, "run_anlaysi": 15, "results_ensembl": 15, "result_1": 15, "pmda": [15, 104], "consolid": 15, "shuji": [15, 104], "fan": [15, 104], "ioanni": [15, 33, 104], "paraskevako": [15, 104], "michael": [15, 37, 104], "gecht": [15, 104], "chri": 15, "callowai": 15, "lippa": 15, "dillon": 15, "niederhut": 15, "shupe": 15, "18th": [15, 104], "134": [15, 33, 104], "142": [15, 27, 104], "2019": [15, 71, 87, 104], "7ddc1dd1": [15, 104], "013": [15, 82, 104], "involv": [16, 26, 28, 37, 52, 53, 105, 111], "analysis_class": 16, "compact": 16, "r_g": 16, "sum_i": [16, 109], "m_i": [16, 109], "r_": [16, 26], "radii": [16, 30, 60, 61, 83, 97, 109, 114], "recomput": 16, "total": [16, 26, 34, 36, 52, 57, 109], "u2": [16, 22, 38, 42, 44, 45, 46, 55, 57, 114], "rog": 16, "0x7f901a31bca0": 16, "10th": [16, 106], "8th": 16, "until": [16, 42, 53, 111], "80th": 16, "slice": [16, 53, 57, 103, 106, 111], "rog_10": 16, "radiusofgyr": 16, "rog_u1": 16, "wrapperclass": 16, "0x7f9000500820": 16, "reus": [16, 108], "rog_u2": 16, "0x7f9000474df0": 16, "templat": 16, "multifram": 16, "meter": 16, "subclass": [16, 42, 44, 108], "behaviour": [16, 28, 42, 45, 61, 71, 98, 105, 106, 114], "initialis": [16, 42, 44, 49, 53, 57], "_prepar": 16, "_conclud": [16, 105], "finalis": [16, 102], "_verbos": 16, "_trajectori": 16, "_t": 16, "_frame_index": 16, "absolut": [16, 26, 101, 106, 108, 109], "radiusofgyration2": 16, "super": 16, "placehold": [16, 50, 92], "fulli": [16, 30, 100, 108], "rog_bas": 16, "26549552": 16, "85342131": 16, "37359575": 16, "29185734": 16, "669018": [16, 53], "679625": 16, "749343": 16, "349043": 16, "673217": [16, 53], "640025": 16, "760545": 16, "382960": 16, "731454": [16, 53], "696454": 16, "801342": 16, "429350": 16, "722283": [16, 53], "677194": 16, "780732": 16, "444711": 16, "743961": [16, 53], "646981": 16, "814553": 16, "489046": 16, "562034": 16, "421683": 16, "539112": 16, "653968": 16, "560575": 16, "451335": 16, "508649": 16, "656678": 16, "550571": 16, "445914": 16, "500640": 16, "646130": 16, "568381": 16, "443243": 16, "507396": 16, "681294": 16, "591575": 16, "442750": 16, "537926": 16, "704494": 16, "subset": [16, 28, 52, 82, 111], "rog_base_10": 16, "__main__": 16, "0x7f90006ca9d0": 16, "999999": 16, "852127": 16, "584163": 16, "001589": 16, "614469": 16, "999998": 16, "019587": 16, "544784": 16, "163276": 16, "878262": 16, "257429": 16, "514341": 16, "487021": 16, "137873": 16, "999997": 16, "542565": 16, "522147": 16, "747461": 16, "530339": 16, "871241": 16, "482385": 16, "088865": 16, "977444": 16, "45": [16, 49, 50, 57, 98], "999996": 16, "182243": 16, "533023": 16, "451285": 16, "290153": 16, "52": [16, 57, 98, 103], "999995": 16, "496493": 16, "771949": 16, "667003": 16, "603098": 16, "839346": 16, "037335": 16, "900327": 16, "942533": 16, "66": [16, 30, 57, 81, 82], "999994": 16, "064333": 16, "061491": 16, "114195": 16, "222884": 16, "999993": 16, "276639": 16, "161863": 16, "298539": 16, "444213": 16, "ax_10": 16, "benefit": [16, 99], "optimis": 16, "those": [16, 19, 26, 30, 53, 57, 67, 87, 98, 102, 108], "pre": [18, 48, 57, 102], "introduct": [18, 20, 21, 33, 34, 43, 53, 99, 104, 105, 112], "nh": [18, 19, 21], "nz": [18, 19, 21, 27], "ly": [18, 19, 21, 22, 27, 28, 37, 53, 55, 106, 107], "oe": [18, 19, 21], "od": [18, 19, 21], "asp": [18, 19, 21, 27, 53, 107], "glu": [18, 19, 21, 27, 53, 106, 107], "definit": [18, 21, 31, 81, 82, 95], "real": [18, 21, 66, 68, 76, 81, 82, 83], "sel_bas": [18, 19, 21], "sel_acid": [18, 19, 21], "r0": [18, 19], "respect": [18, 26, 30, 37, 46, 53, 109], "radiu": [18, 20, 21, 30, 36, 40, 53, 83, 87, 106, 109, 114], "greater": [18, 26, 27, 33, 106], "min_radiu": [18, 30], "fraction_contacts_between": 18, "is_in_contact": 18, "size": [18, 26, 36, 38, 43, 46, 49, 50, 53, 55, 71, 89, 99, 102, 111], "custom": [18, 50, 66, 98, 99, 105, 109], "refgroup": [18, 19], "post": [18, 26, 48, 55, 100, 105, 112], "ca_df": [18, 21], "988764": 18, "943820": 18, "axessubplot": [18, 30, 31, 37], "lili": [19, 26, 39], "pydev": [19, 26, 39], "oppos": 19, "unfold": 19, "hard_cut_q": 19, "radius_cut_q": [19, 20], "fkdd07": [19, 20, 104], "soft_cut_q": 19, "bhe13": [19, 20, 104], "pseudo": 19, "salt": [19, 21], "bridg": [19, 21], "studi": 19, "term": [19, 57, 80, 85, 87, 99, 106], "secondari": [19, 21], "tertiari": [19, 21], "hard_cut": 19, "equal": [19, 24, 42, 43, 108], "ca1": [19, 22], "ca1_df": 19, "492754": 19, "449275": 19, "507246": 19, "463768": 19, "multipli": [19, 26, 86, 113], "matric": [19, 24, 45], "initial_contact": 19, "70": [19, 53, 57, 82, 98, 108, 110], "44": [19, 20, 30, 48, 49, 57, 103, 104], "n_ref": 19, "69": [19, 21, 57, 98], "n_contact": [19, 21], "contat": 19, "drop": [19, 43, 100, 105], "rearrang": [19, 21], "never": [19, 101, 108, 109], "radius_cut": 19, "\u00e5ngstr\u00f6m": [19, 38, 53, 68, 79, 113], "No": [19, 21, 28, 101, 108, 109], "ca2": [19, 22], "decreas": [19, 33, 44], "gradual": [19, 105], "75": [19, 36, 40, 49], "almost": [19, 53, 109, 114], "half": [19, 37], "closer": [19, 44], "moreov": 19, "ca2_df": 19, "tupl": [19, 30, 50, 98, 103, 105, 109], "unchang": [19, 57, 105], "acidic_2": 19, "basic_2": 19, "soft_cut": 19, "q": [19, 46, 82, 83, 96], "r_0": 19, "beta": [19, 22, 39, 50, 55, 67, 81, 82, 102], "lambda": [19, 89], "control": [19, 39, 42, 44, 48, 110], "toler": 19, "ca3": 19, "lambda_const": 19, "ca3_df": 19, "999094": 19, "719242": 19, "984928": 19, "767501": 19, "984544": 19, "788027": 19, "970184": 19, "829219": 19, "980425": 19, "833500": 19, "count": [19, 21, 26, 27, 36, 40, 96, 105], "rise": [19, 39], "se": 19, "characteris": [19, 20, 38, 39], "hummer": [19, 20, 104], "eaton": [19, 20, 104], "mechan": [19, 20, 104], "nation": [19, 20, 104], "academi": [19, 20, 104], "110": [19, 20, 34, 87, 104], "17874": [19, 20, 104], "17879": [19, 20, 104], "octob": [19, 20, 34, 42, 43, 44, 45, 46, 104], "2013": [19, 20, 30, 67, 104], "00259": [19, 20, 104], "pna": [19, 20, 104], "1073": [19, 20, 104], "1311599110": [19, 20, 104], "joel": [19, 20, 104], "franklin": [19, 20, 104], "patric": [19, 20, 104], "koehl": [19, 20, 104], "sebastian": [19, 20, 104], "doniach": [19, 20, 104], "marc": [19, 20, 104], "delaru": [19, 20, 104], "minactionpath": [19, 20, 104], "maximum": [19, 20, 27, 30, 45, 66, 104], "likelihood": [19, 20, 45, 104], "energi": [19, 20, 52, 57, 104], "landscap": [19, 20, 104], "nucleic": [19, 20, 104, 106], "suppl_2": [19, 20, 104], "w477": [19, 20, 104], "w482": [19, 20, 104], "2007": [19, 20, 38, 104], "00083": [19, 20, 104], "nar": [19, 20, 104], "lookup": [19, 20, 104], "gkm342": [19, 20, 104], "q1q2": 20, "q1q2_df": 20, "946494": 20, "980926": 20, "949262": 20, "973660": 20, "952952": 20, "972752": 20, "951107": 20, "970027": 20, "948339": 20, "relat": [21, 30, 100, 105], "overli": 21, "simplist": 21, "group_a": 21, "group_b": 21, "contacts_within_cutoff": 21, "dist": [21, 22, 102], "distance_arrai": [21, 23], "contact_matrix": 21, "77": [21, 81], "85": [21, 108], "pdb_small": [22, 23, 24, 45, 46, 50, 108], "pdb_close": 22, "u1": [22, 38, 42, 44, 45, 46, 109, 114], "offset": [22, 89, 94, 105], "comparison": [22, 42, 43, 44, 45, 104, 105, 106], "resids1": 22, "resids2": 22, "highlight": [22, 38, 57, 102, 108], "0x7f06d2a3b7c0": 22, "unitcel": [22, 67], "box": [22, 23, 26, 40, 48, 49, 50, 52, 54, 57, 67, 71, 88, 105, 111, 112, 114], "lx": [22, 55], "lz": [22, 55], "gamma": [22, 39, 50, 55, 67, 81, 82], "resids1_box": 22, "resids2_box": 22, "dist_box": 22, "0x7f06d09bc700": 22, "lid_ca": 23, "nmp_ca": 23, "n_lid": 23, "n_nmp": 23, "dist_arr": 23, "fig": [23, 24, 33, 45, 46, 48], "subplot": [23, 24, 33, 38, 42, 43, 44, 45, 48], "im": [23, 24, 45, 48], "upper": [23, 24, 26, 30, 42, 44, 45], "tick_interv": 23, "set_ytick": 23, "set_xtick": [23, 42, 44], "set_yticklabel": 23, "set_xticklabel": [23, 42, 44], "figur": [23, 24, 37, 44, 46, 48, 50, 61], "titl": [23, 24, 26, 27, 40, 42, 44, 45, 53, 81], "cbar": [23, 24, 45, 48], "lid_com": 23, "compound": [23, 24, 48, 55, 81, 87, 105, 108, 109, 112], "nmp_com": 23, "res_dist": [23, 24], "fig2": [23, 24, 42, 44], "ax2": [23, 24], "im2": [23, 24], "cbar2": [23, 24, 42, 44], "n_ca": 24, "self_distance_arrai": 24, "flat": [24, 30, 44, 48], "flatten": [24, 30, 34, 48], "triangular": 24, "self_dist": 24, "22791": 24, "sq_dist_arr": 24, "triu": 24, "triu_indices_from": 24, "pcolor": 24, "rectangular": 24, "grid": [24, 48, 50], "set_aspect": 24, "res_com": 24, "n_re": 24, "sq_dist_r": 24, "pretti": [24, 98], "hydrogenbondanaysi": [26, 27, 28], "smith": [26, 27, 28], "set_printopt": 26, "linewidth": 26, "waterpsf": [26, 49], "waterdcd": [26, 49], "hydrogenbond": [26, 27, 28, 105], "hydrogenbondanalysi": [26, 27, 28, 105], "prmtop": [26, 59, 61, 88, 97, 109], "guarante": [26, 83], "identif": [26, 34, 104], "donor": [26, 27, 28, 84, 105], "criteria": 26, "acceptor": [26, 27, 28, 84], "da": [26, 27, 107], "theta_": [26, 31], "dha": [26, 27], "150": [26, 28, 82], "involve": 26, "acceptors_sel": [26, 27, 28], "hydrogens_sel": [26, 27, 28], "donor_sel": 26, "oh2": [26, 28], "h1": [26, 28, 50, 52, 78], "oxygen": [26, 48, 50, 106], "charmm": [26, 58, 59, 61, 68, 81, 83, 88, 96, 97, 103, 106, 107], "tip3p": [26, 113], "model": [26, 27, 30, 31, 53, 61, 77, 80, 81, 82, 97, 104, 109], "field": [26, 30, 53, 60, 66, 82, 83, 87, 93, 106, 107, 109], "hbond": [26, 27, 28, 52, 105], "donors_sel": 26, "d_a_cutoff": 26, "d_h_a_angle_cutoff": 26, "update_select": [26, 27], "boost": [26, 100], "hbond_analysi": [26, 27, 28, 105], "0x14115fdf0": 26, "n_": [26, 34, 36], "textrm": 26, "follw": 26, "donor_index": 26, "hydrogen_index": 26, "acceptor_index": 26, "da_dist": 26, "dha_angl": 26, "82744082": 26, "48955173": 26, "83": [26, 87], "float64": [26, 109], "cast": 26, "integ": [26, 66, 72, 81, 82, 83, 102, 105, 108], "first_hbond": 26, "donor_ix": 26, "hydrogen_ix": 26, "acceptor_ix": 26, "astyp": 26, "count_by_tim": 26, "lw": [26, 27, 48], "hydrogon": 26, "bold": [26, 27], "hb": [26, 36], "count_by_typ": 26, "tip3": [26, 28], "ot": 26, "u21": 26, "donor_resnam": 26, "donor_typ": 26, "n_donor": 26, "mean_count": 26, "forcefield": 26, "due": [26, 34, 44, 71, 83, 102, 105], "count_by_id": [26, 27], "four": [26, 39, 44, 45, 103, 109], "descend": 26, "observ": 26, "most_common": 26, "wat": [26, 30], "ht": 26, "histogram": [26, 30, 48, 105], "bin_edg": 26, "linspac": [26, 27, 49], "51": [26, 30, 53, 57, 98, 103], "bin_cent": 26, "faster": [26, 79, 100], "fill_valu": 26, "zpo": 26, "hist": [26, 38], "funcion": 26, "height": 26, "wish": [26, 28, 52, 55, 79, 111, 114], "xy": [26, 48, 57], "mean_xy_area": 26, "prod": 26, "lipid": [26, 27, 28, 106], "bilay": 26, "phosphor": 26, "leaflet": 26, "headgroup_atom": 26, "interface_zpo": 26, "hydrogenbondsanalysi": 26, "pkl": 26, "wb": 26, "dump": [26, 58, 59, 61, 97, 103, 105], "rb": 26, "npy": 26, "to_csv": 26, "csv": 26, "paul": [26, 27, 28, 37, 104], "robert": [26, 27, 28, 52], "ziolek": [26, 27, 28], "elena": [26, 27, 28, 42, 43, 44, 45, 104], "gazzarrini": [26, 27, 28], "dylan": [26, 27, 28], "owen": [26, 27, 28], "christian": [26, 27, 28], "d": [26, 27, 28, 45, 46, 48, 52, 53, 60, 104], "lorenz": [26, 27, 28], "On": [26, 27, 28, 48, 50, 55, 57, 87, 102, 108], "hyaluron": [26, 27, 28], "synovi": [26, 27, 28], "fluid": [26, 27, 28], "phy": [26, 27, 28], "chem": [26, 27, 28, 45, 52, 53, 78], "9845": [26, 27, 28], "9857": [26, 27, 28], "dx": [26, 27, 28, 46, 48, 104], "1039": [26, 27, 28, 98], "c9cp01532a": [26, 27, 28], "intramolecular": 27, "auto": [27, 42, 43, 44], "0x137309280": 27, "autocorrel": [27, 31], "presenc": 27, "tau": 27, "bigg": 27, "h_": 27, "ij": [27, 48], "t_0": 27, "period": [27, 48, 87, 88, 105, 106, 112], "statist": [27, 34, 104, 108], "carbonn": 27, "2015": [27, 42, 43, 44, 45, 46, 104], "consecut": 27, "window_step": 27, "tau_max": 27, "tau_fram": 27, "hbond_lifetim": 27, "tau_tim": 27, "dt": [27, 33, 34, 57, 61, 81, 88, 95, 105, 107, 114], "obtain": [27, 48, 50, 57, 83, 104, 105, 113], "biexponenti": 27, "curv": [27, 34], "exp": [27, 31], "tau_1": 27, "tau_2": 27, "timescal": 27, "fit_biexponenti": 27, "tau_timeseri": 27, "ac_timeseri": 27, "curve_fit": 27, "tau1": 27, "tau2": 27, "param": 27, "params_covari": 27, "fit_t": 27, "1000": [27, 44, 50, 105, 106, 113, 114], "fit_ac": 27, "decai": [27, 31], "time_const": 27, "maxium": 27, "times_tim": 27, "loc": 27, "02": [27, 36, 104], "preval": 27, "0x1376ccc70": 27, "tcount": 27, "124": 27, "nh2": [27, 28], "hh22": [27, 28], "143": 27, "oe1": 27, "nh1": [27, 28, 83], "hh11": [27, 28, 83], "104": [27, 50], "od1": 27, "206": 27, "ne": [27, 28], "he": [27, 28, 45], "210": [27, 37, 53, 82], "71": [27, 30, 82, 98], "76": [27, 81, 82], "200": [27, 42, 49, 52, 57, 102, 114], "hz2": [27, 28], "208": 27, "od2": 27, "211": 27, "hz3": [27, 28], "204": [27, 98], "92": 27, "thr": [27, 36, 37, 53, 105, 107], "199": 27, "og1": [27, 36, 105], "hg1": [27, 36, 53], "197": 27, "tyr": [27, 107], "133": [27, 98], "oh": 27, "hh": 27, "146": [27, 57], "193": 27, "108": 27, "gly": [27, 37, 53, 96, 98, 106, 107], "ot2": [27, 53], "simplest": [27, 28], "d_ix": 27, "h_ix": 27, "a_ix": 27, "tmp_hbond": 27, "hbl": 27, "ncol": 27, "poor": [27, 34], "smoothli": 27, "toward": [27, 40, 110], "seen": [27, 34, 42, 44, 45, 46, 53, 105], "paola": 27, "multiscal": 27, "polyamid": [27, 31], "224907": 27, "1063": [27, 33, 34, 104], "4922445": 27, "intramolcular": 28, "saw": 28, "basisc": 28, "accetptor": 28, "0x7fce51309190": 28, "hi": [28, 53, 105, 107], "751": [28, 30, 104], "userwarn": [28, 37], "o": [28, 30, 31, 36, 45, 50, 52, 53, 98, 104, 106, 107, 108], "0x7fce50983790": 28, "hydrogen_sel": 28, "hh12": 28, "hh21": 28, "hn": [28, 53], "hz1": 28, "slightli": 28, "water": [28, 36, 40, 49, 52, 55, 98, 105, 106, 112, 113], "protein_hydrogens_sel": 28, "protein_acceptors_sel": 28, "water_hydrogens_sel": 28, "water_acceptors_sel": 28, "0x7fce5098a250": 28, "0x7fce5096fd60": 28, "wrapper": [30, 112], "sgw93": [30, 104], "snw": [30, 104], "pdb_hole": 30, "binari": [30, 57, 58, 59, 61, 79, 85, 87, 88, 90, 100], "helper": [30, 44], "seri": [30, 34, 57, 104, 105], "sphere": [30, 53, 106], "overlap": [30, 36, 50, 103], "van": [30, 33, 60, 104, 109, 114], "der": [30, 33, 60, 104, 109, 114], "waal": [30, 60, 109, 114], "tip": 30, "hoh": 30, "ignore_residu": 30, "wildcard": [30, 53, 106], "similarli": [30, 36, 37, 48, 50, 98, 109], "holeanalysi": 30, "prefer": [30, 42, 100, 108], "anim": 30, "cpoint": 30, "cvect": 30, "resolut": [30, 106], "gramicidin": [30, 104], "channel": [30, 48, 99, 104], "random_se": 30, "reproduc": 30, "advis": [30, 105], "outfil": [30, 108], "hole1": 30, "sphpdb_file": 30, "sph": 30, "vdwradii_fil": 30, "31415": 30, "readabl": [30, 87], "simple2": 30, "rad": [30, 111, 113], "log": [30, 42, 44, 101, 105], "tmp": 30, "pdb_name": 30, "fortran77": 30, "symlink": [30, 105], "shorten": 30, "keep_fil": 30, "sphpdb": 30, "profiles1": 30, "425": [30, 34, 104], "recarrai": 30, "rxncoord": 30, "rxn_coord": 30, "cen_line_d": 30, "centr": 30, "proce": 30, "pore_length": 30, "42": [30, 48, 49, 57, 103, 106], "create_vmd_surfac": 30, "sph_process": 30, "tk": 30, "consol": 30, "drawn": [30, 44, 107, 111], "customis": 30, "plane": [30, 39, 48, 60], "multipdb_hol": 30, "center_of_geometri": [30, 50, 53, 55, 109], "0x7f1a146af610": 30, "fourth": [30, 111], "truncat": [30, 89], "91": 30, "63": [30, 40, 52, 57], "65": [30, 57, 104], "64": [30, 57], "05": [30, 104], "58": [30, 57, 87], "87": 30, "57": [30, 52, 57, 103], "62": [30, 40, 57, 103], "56": [30, 53, 57, 103], "48": [30, 49, 52, 57, 81, 82, 98], "74": [30, 98, 103], "54": [30, 53, 57, 81, 82, 113], "dict_kei": [30, 39, 57], "3967": 30, "bin_radii": 30, "edg": [30, 105], "histogram_radii": 30, "aggreg": 30, "analog": [30, 53], "plot_mean_profil": 30, "n_std": 30, "midpoint": [30, 48], "zeta": 30, "min_radii": 30, "3f": [30, 31, 34, 39], "237": [30, 82], "567": 30, "533": 30, "243": 30, "198": 30, "296": 30, "438": 30, "511": 30, "879": 30, "997": 30, "differenti": 30, "plot3d": 30, "3d": [30, 43, 44, 53], "axes3dsubplot": 30, "zlabel": 30, "r_max": 30, "chunk": [30, 36], "blue": [30, 37, 48, 50, 72], "fill_alpha": 30, "opac": [30, 48], "sfsb14": [30, 104], "over_order_paramet": 30, "rmsd_valu": 30, "88": 30, "order_paramet": 30, "care": [30, 40, 83], "repeat": [30, 50], "op_profil": 30, "item": [30, 39, 52, 108], "000": [30, 52, 78], "543": [30, 82], "221": 30, "389": 30, "442": 30, "399": [30, 98], "663": 30, "379": 30, "443": 30, "884": 30, "391": 30, "149": [30, 34, 104], "205": 30, "139": 30, "plot_order_paramet": 30, "singular": [30, 38, 43, 44, 109], "min": [30, 50], "vlue": 30, "plot3d_order_paramet": 30, "soon": [30, 102], "tmp_file": 30, "hole000": 30, "hole001": 30, "hole002": 30, "hole003": 30, "hole004": 30, "hole005": 30, "hole006": 30, "hole007": 30, "hole008": 30, "hole009": 30, "hole010": 30, "delete_temporary_fil": 30, "temporari": [30, 105], "ha2": [30, 53, 98], "0962": 30, "smart": [30, 104, 105], "goodfellow": [30, 104], "wallac": [30, 104], "biophys": [30, 104], "2455": [30, 104], "2460": [30, 104], "1993": [30, 34, 104], "00522": [30, 104], "ncbi": [30, 104], "nlm": [30, 104], "nih": [30, 104], "gov": [30, 104], "pmc": [30, 104], "pmc1225986": [30, 104], "s0006": [30, 104], "3495": [30, 104], "81293": [30, 104], "neduvelil": [30, 104], "wang": [30, 52, 104], "sansom": [30, 104], "ion": [30, 42, 44, 104, 105], "354": [30, 104], "360": [30, 104], "376": [30, 104], "1996": [30, 104], "00935": [30, 104], "s0263": [30, 104], "7855": [30, 104], "00009": [30, 104], "luka": [30, 104], "stelzl": [30, 104], "philip": [30, 38, 104], "fowler": [30, 104], "gate": [30, 104], "occlud": [30, 104], "intermedi": [30, 104], "transport": [30, 104], "laci": [30, 104], "426": [30, 82, 104], "735": [30, 104], "februari": [30, 104], "2014": [30, 34, 104], "00000": [30, 104], "asu": [30, 104], "pure": [30, 31, 87, 104], "024": [30, 82, 104], "trz_psf": 31, "trz": [31, 58, 59, 61, 105], "melt": [31, 34], "nitrogen": [31, 98, 105, 106], "ch": 31, "spatial": [31, 46], "arrang": [31, 46], "sort_backbon": 31, "sorted_bb": 31, "bb": [31, 53], "decorrel": 31, "co": [31, 67], "a_i": [31, 46], "a_": 31, "exponenti": 31, "yield": [31, 34, 105], "l_p": 31, "l_b": 31, "approx": [31, 108], "persistencelength": 31, "plen": 31, "0x7f4b7ddfd160": 31, "lb": 31, "lp": 31, "179": 31, "917": [31, 106], "cl06": [33, 104], "dlphhvdw08": [33, 104], "rzmc11": [33, 104], "fpkd11": [33, 104], "dmap": 33, "epsilon": [33, 109], "0x7f10a66864c0": 33, "_eigenvector": 33, "10101525": 33, "domin": [33, 38], "eigenvalu": [33, 34, 38], "spectral": 33, "gap": [33, 103], "line2d": [33, 49, 57], "0x7f10a3e2be80": 33, "five": [33, 34, 53, 93], "expon": 33, "embed": [33, 44], "mode2": 33, "mode3": 33, "mode4": 33, "mode5": 33, "mode6": 33, "094795": 33, "075950": 33, "054708": 33, "035526": 33, "022757": 33, "166068": 33, "132017": 33, "094409": 33, "060914": 33, "038667": 33, "199960": 33, "154475": 33, "107425": 33, "067632": 33, "041445": 33, "228815": 33, "168694": 33, "111460": 33, "067112": 33, "038469": 33, "250384": 33, "171873": 33, "103407": 33, "057143": 33, "028398": 33, "pairgrid": [33, 34], "quickest": [33, 34], "easiest": [33, 34, 53], "dot": 33, "kinet": [33, 52, 57], "pathwai": [33, 46, 104], "smaller": [33, 50, 98], "sn": [33, 34], "hue": [33, 34], "palett": [33, 34], "color_palett": [33, 34], "oranges_d": [33, 34], "n_color": [33, 34], "marker": [33, 34, 37], "axisgrid": 33, "0x7f10a5e45370": 33, "ronald": [33, 104], "coifman": [33, 104], "st\u00e9phane": [33, 104], "lafon": [33, 104], "2006": [33, 104], "02271": [33, 104], "acha": [33, 104], "04": [33, 104], "006": [33, 82, 104], "de": [33, 37, 104], "la": [33, 104], "port": [33, 104], "herbst": [33, 104], "hereman": [33, 104], "walt": [33, 104], "19th": [33, 104], "symposium": [33, 104], "pattern": [33, 104, 106, 108], "recognit": [33, 104], "south": [33, 104], "africa": [33, 104], "2008": [33, 104], "00038": [33, 104], "andrew": [33, 52, 104], "ferguson": [33, 104], "athanassio": [33, 104], "panagiotopoulo": [33, 104], "kevrekidi": [33, 104], "pablo": [33, 104], "debenedetti": [33, 104], "nonlinear": [33, 104], "chemic": [33, 34, 38, 53, 98, 104, 114], "509": [33, 104], "00085": [33, 104], "cplett": [33, 104], "066": [33, 104], "mari": [33, 104], "rohrdanz": [33, 104], "wenwei": [33, 104], "zheng": [33, 104], "mauro": [33, 104], "maggioni": [33, 104], "cecilia": [33, 104], "clementi": [33, 104], "reaction": [33, 104, 105], "124116": [33, 104], "march": [33, 48, 100, 104], "00220": [33, 104], "3569857": [33, 104], "alb93": [34, 104], "jol02": [34, 104], "sjs14": [34, 104], "ss18": [34, 104], "therebi": 34, "covari": [34, 45, 105], "diagonalis": 34, "determinist": 34, "alter": [34, 48], "answer": 34, "variat": [34, 38], "n_compon": [34, 43, 44], "p_compon": 34, "times3": 34, "n_bb": 34, "855": 34, "2565": [34, 45], "explain": 34, "decim": [34, 94, 108], "pc1": [34, 43, 44], "5f": [34, 40], "4203": 34, "19053": 34, "meaningless": 34, "intuit": 34, "percentag": 34, "cumul": [34, 36, 40], "cumulated_vari": 34, "903": 34, "951": 34, "964": 34, "overlin": 34, "th": [34, 40], "tranform": 34, "pc2": [34, 43, 44], "pc3": [34, 43, 44], "118": 34, "408413": 34, "088241": 34, "746624": 34, "115": 34, "561879": 34, "786797": 34, "652498": 34, "112": [34, 87, 103], "675616": 34, "038766": 34, "920274": 34, "341467": 34, "306984": 34, "427098": 34, "107": 34, "584302": 34, "464154": 34, "612104": 34, "outer": 34, "otim": 34, "trans1": 34, "reshap": [34, 44], "proj1": 34, "fac": [34, 114], "random": [34, 89, 94, 103], "perfect": 34, "mls09": [34, 104], "hes02": [34, 104], "cosine_cont": 34, "dmonstrat": 34, "960": [34, 98], "906": 34, "723": [34, 83], "resembl": 34, "tidi": 34, "id_var": 34, "var_nam": 34, "value_nam": 34, "facetgrid": 34, "lineplot": 34, "ci": 34, "confid": 34, "interv": 34, "andrea": [34, 104], "amadei": [34, 104], "antoniu": [34, 104], "linssen": [34, 104], "herman": [34, 104], "berendsen": [34, 104], "412": [34, 104], "_eprint": [34, 104], "onlinelibrari": [34, 104], "pdf": [34, 57, 104], "prot": [34, 37, 104], "340170408": [34, 104], "jolliff": [34, 104], "springer": [34, 104], "verlag": [34, 104], "york": [34, 104], "2002": [34, 104], "isbn": [34, 104], "978": [34, 104], "387": [34, 104], "95442": [34, 104], "gp": [34, 104], "book": [34, 104], "9780387954424": [34, 104], "1007": [34, 104], "b98835": [34, 104], "florian": [34, 104], "sittel": [34, 104], "abhinav": [34, 104], "jain": [34, 104], "gerhard": [34, 104], "stock": [34, 104], "cartesian": [34, 49, 104, 105], "intern": [34, 53, 104, 110], "141": [34, 96, 104], "014111": [34, 104], "4885338": [34, 104], "perspect": [34, 104], "metast": [34, 104], "150901": [34, 104], "american": [34, 38, 104], "institut": [34, 104], "aip": [34, 104], "scitat": [34, 104], "5049637": [34, 104], "xtc": [36, 37, 40, 42, 44, 45, 46, 48, 53, 55, 58, 59, 61, 98, 103, 105, 112, 114], "g_": [36, 40], "normalis": [36, 40, 48], "homogen": [36, 40], "n_a": 36, "n_b": 36, "delta": [36, 48], "_j": 36, "int_0": 36, "dr": 36, "rho": 36, "neighbour": [36, 42, 46], "solvat": [36, 48], "shell": [36, 40, 106], "spheric": [36, 40, 106], "interrdf": [36, 40, 105], "res60": 36, "irdf": 36, "nbin": [36, 40, 49], "0x7f0442f64370": 36, "000e": [36, 109], "200e": 36, "800e": 36, "010e": 36, "540e": 36, "700e": 36, "920e": 36, "300e": 36, "950e": 36, "140e": 36, "290e": 36, "310e": 36, "190e": 36, "780e": 36, "020e": 36, "910e": 36, "560e": 36, "320e": 36, "017e": 36, "089e": 36, "197e": 36, "364e": 36, "349e": 36, "483e": 36, "556e": 36, "713e": 36, "783e": 36, "781e": 36, "145e": 36, "298e": 36, "379e": 36, "501e": 36, "777e": 36, "868e": 36, "900e": 36, "024e": 36, "186e": 36, "244e": 36, "382e": 36, "551e": 36, "817e": 36, "829e": 36, "160e": 36, "219e": 36, "411e": 36, "557e": 36, "824e": 36, "943e": 36, "980e": 36, "237e": 36, "507e": 36, "630e": 36, "878e": 36, "193e": 36, "533e": 36, "740e": 36, "922e": 36, "276e": 36, "293e": 36, "616e": 36, "themselv": [36, 108], "exclusion_block": 36, "mask": 36, "irdf2": 36, "0x7f044305ffa0": 36, "threonin": 36, "irdf3": 36, "0x7f0443041df0": 36, "discount": 36, "exclus": [36, 87, 105], "thr_c1": 36, "thr_other1": 36, "cg2": 36, "hg21": 36, "hg22": 36, "hg23": 36, "thr_c": 36, "thr_other": 36, "irdf4": 36, "0x7f0442bc0af0": 36, "compris": 37, "gro": [37, 42, 44, 45, 46, 53, 58, 59, 61, 87, 97, 103, 105, 109, 114], "canon": 37, "phi": 37, "psi": 37, "omega": 37, "chi_n": 37, "chi": 37, "chi_1": 37, "phi_select": 37, "220": [37, 82], "il": [37, 53, 105, 106, 107, 109], "leu": [37, 53, 107], "psi_select": 37, "omega_select": 37, "chi1_select": [37, 105], "169": 37, "78220560918737": 37, "dih": [37, 57], "n_atomgroup": 37, "ang": 37, "degre": [37, 39, 53, 67, 81, 82, 113], "0x7fcd2ba11580": 37, "fig_polar": 37, "ax_polar": 37, "add_subplot": [37, 44, 48], "111": [37, 44, 48], "polar": 37, "0x7fcd2b8cb430": 37, "omit": [37, 57, 83], "hold": [37, 53, 99, 111, 114], "rama": 37, "212": [37, 53], "407": 37, "dark": 37, "margin": 37, "lighter": [37, 108], "500": [37, 52, 57, 114], "lda": [37, 104], "99": [37, 53, 65, 93, 105], "chi_2": 37, "alanin": [37, 96, 106], "cystein": 37, "129": [37, 38, 98, 104], "589": [37, 57], "ala": [37, 52, 53, 87, 96, 98, 106, 107], "cy": [37, 105, 107], "pro": [37, 96, 107], "ser": [37, 105, 107], "val": [37, 39, 105, 107], "select_remov": 37, "jwlm78": [37, 104], "jo\u00ebl": [37, 104], "shoshanna": [37, 104], "wodak": [37, 104], "levitt": [37, 104], "bernard": [37, 52, 104], "maigret": [37, 104], "125": [37, 82, 104], "357": [37, 104], "386": [37, 98, 104], "1978": [37, 104], "00874": [37, 104], "sciencedirect": [37, 104], "0022283678904084": [37, 104], "0022": [37, 104], "2836": [37, 104], "78": [37, 81, 104], "90408": [37, 104], "simon": [37, 104], "lovel": [37, 104], "davi": [37, 104], "bryan": [37, 104], "arendal": [37, 104], "bakker": [37, 104], "prisant": [37, 104], "jane": [37, 104], "richardson": [37, 104], "valid": [37, 81, 89, 104, 105, 106], "c\u03b1": [37, 104], "\u03d5": [37, 104], "\u03c8": [37, 104], "c\u03b2": [37, 104], "437": [37, 104], "450": [37, 104], "januari": [37, 104], "2003": [37, 104], "03997": [37, 104], "10286": [37, 104], "hkp": [38, 104], "gnm": 38, "concert": 38, "bound": [38, 42, 44, 45, 53, 103], "spring": 38, "robust": [38, 105], "decomposit": [38, 43, 44], "gnmanalysi": 38, "nma1": 38, "0x7f05569e96d0": 38, "picosecond": [38, 52, 53, 79, 113], "nma2": 38, "0x7f0556a1f8e0": 38, "lowest": [38, 46, 50, 105], "frequenc": [38, 104], "peak": 38, "histfig": 38, "histax": 38, "nrow": 38, "sharex": 38, "sharei": [38, 42, 44], "set_xlabel": [38, 43, 44], "stai": 38, "linefig": 38, "lineax": 38, "0x7f05540e1ac0": 38, "closecontactgnmanalysi": 38, "kirchhoff": 38, "nma_clos": 38, "0x7f0554052c40": 38, "benjamin": [38, 104], "hall": [38, 104], "samantha": [38, 104], "kay": [38, 104], "andi": [38, 104], "pang": [38, 104], "rafael": [38, 104], "perera": [38, 104], "biggin": [38, 104], "character": [38, 39, 104], "societi": [38, 104], "11394": [38, 104], "11401": [38, 104], "septemb": [38, 104], "00020": [38, 104], "1021": [38, 104], "ja071797i": [38, 104], "helic": [39, 104], "helan": [39, 104], "helix_analysi": [39, 105], "bkv00": [39, 104], "sm67": [39, 104], "hel": 39, "contigu": [39, 105], "sugeta": [39, 104], "miyazawa": [39, 104], "slide": 39, "window": [39, 43, 96, 100, 105], "local_rotation_vector": 39, "bisect": 39, "middl": 39, "local_origin": 39, "local_twist": 39, "twist": 39, "theta": 39, "residues_per_turn": 39, "local_ax": 39, "local_height": 39, "bend": [39, 87], "global_ax": 39, "all_bend": 39, "local_bend": 39, "apart": 39, "global_tilt": 39, "ref_axi": 39, "local_screw": 39, "resnum": [39, 61, 72, 87, 106, 109], "161": 39, "187": [39, 67], "summaris": 39, "local_nres_per_turn": 39, "local_helix_direct": 39, "local_screw_angl": 39, "global_axi": 39, "86": 39, "sample_sd": 39, "abs_dev": 39, "715": 39, "universe_from_origin": 39, "add_trajectori": 39, "helanal_imag": 39, "bansal": [39, 104], "kumar": [39, 46, 104], "velavan": [39, 104], "biomolecular": [39, 68, 104], "811": [39, 104], "819": [39, 104], "2000": [39, 50, 104], "00175": [39, 104], "07391102": [39, 104], "10506570": [39, 104], "interrdf_": [40, 105], "basi": [40, 83], "ca60": 40, "awai": [40, 50, 106], "ca61": 40, "ca62": 40, "sphzone": [40, 106], "sel_a": 40, "ss_rdf": 40, "norm": [40, 105], "531": 40, "superfl": 40, "0x7faa885ab280": 40, "1041": [40, 98], "571st": 40, "ca61_h2o_571": 40, "570": [40, 52], "0023665": 40, "00114292": 40, "00106921": 40, "00094167": 40, "0007466": 40, "00055068": 40, "0003116": 40, "00025464": 40, "00024669": 40, "w570": 40, "mw6365": 40, "nonzero": 40, "4374": 40, "triplet": 40, "00028": 40, "water_for_ca60": 40, "k_valu": 40, "k_count": 40, "return_count": 40, "k_max": 40, "argmax": 40, "568": 40, "get_cdf": 40, "cdf": 40, "w568": 40, "hw16365": 40, "proportion": 40, "ss_rdf_nodens": 40, "psf_namd_gbi": [42, 44, 45, 46], "dcd_namd_gbi": [42, 44, 45, 46], "clusteringmethod": [42, 43], "clm": [42, 43], "u3": [42, 44, 45, 46, 114], "namd": [42, 44, 45, 46, 58, 59, 61, 97, 103], "ce": [42, 53], "clustering_method": [42, 43], "partit": [42, 43, 44, 49], "jensen": [42, 43, 44], "shannon": [42, 43, 44], "ln": [42, 44], "ces0": 42, "details0": [42, 44], "68070702": 42, "69314718": 42, "clustercollect": 42, "cluster_collect": 42, "49": [42, 49, 57], "first_clust": 42, "centroid": [42, 43, 109], "fig0": [42, 44], "ax0": [42, 44], "im0": [42, 44], "vmax": [42, 44], "vmin": [42, 44], "xtick": [42, 44, 45], "ytick": [42, 44, 45], "cbar0": [42, 44], "set_label": [42, 44, 48], "affin": 42, "prograg": 42, "exemplar": 42, "fewer": [42, 88], "damp": 42, "numer": [42, 44, 53, 66, 106], "oscil": [42, 44], "nois": 42, "affinitypropagationn": 42, "max_it": 42, "convergence_it": 42, "add_nois": 42, "ces1": 42, "details1": [42, 44], "ncore": [42, 44], "fig1": [42, 44], "ax1": [42, 44], "im1": [42, 44], "cbar1": [42, 44], "kmean": [42, 43], "inertia": [42, 43, 109], "km1": [42, 43], "init": [42, 43], "km2": [42, 43], "dbscan": 42, "min_sampl": 42, "ep": 42, "dens": 42, "outlier": 42, "carefulli": [42, 67], "dre": [42, 44], "dres_converg": [42, 43], "db1": 42, "leaf_siz": 42, "db2": 42, "ces2": 42, "details2": [42, 44], "figsiz": [42, 44], "imi": [42, 44], "set_titl": [42, 44], "ravel": [42, 44, 48], "tolist": [42, 44], "emphasis": 42, "meanwhil": 42, "clearli": [42, 83], "n_db": 42, "bootstrap": [42, 44], "avg": [42, 44, 48], "std": [42, 44, 105], "estimate_error": [42, 44], "68682809": 42, "00000000e": 42, "26432545e": 42, "02166694e": 42, "59975057e": 42, "matteo": [42, 43, 44, 45, 104], "tiberti": [42, 43, 44, 45, 104], "papaleo": [42, 43, 44, 45, 104], "tone": [42, 43, 44, 45, 104], "bengtsen": [42, 43, 44, 45, 104], "wouter": [42, 43, 44, 45, 104], "boomsma": [42, 43, 44, 45, 104], "kresten": [42, 43, 44, 45, 104], "lindorff": [42, 43, 44, 45, 104], "larsen": [42, 43, 44, 45, 104], "quantit": [42, 43, 44, 45, 104], "plo": [42, 43, 44, 45, 46, 52, 104], "e1004415": [42, 43, 44, 45, 104], "00031": [42, 43, 44, 45, 104], "ploscompbiol": [42, 43, 44, 45, 104], "1371": [42, 43, 44, 45, 46, 104], "pcbi": [42, 43, 44, 45, 46, 104], "1004415": [42, 43, 44, 45, 104], "dimensionality_reduct": [43, 44], "dimensionalityreductionmethod": [43, 44], "drm": [43, 44], "window_s": 43, "had": [43, 102, 105], "ces_converg": 43, "rate": [43, 44], "resampl": 43, "clustering_ensemble_similar": 43, "ces_conv": 43, "number_of_window": 43, "number_of_clustering_method": 43, "sim": [43, 52], "4f": [43, 53], "4819": 43, "4028": 43, "3170": 43, "2522": 43, "1983": 43, "1464": 43, "0991": 43, "0567": 43, "0000": 43, "ces_fig": 43, "ces_ax": 43, "km3": 43, "ces_conv2": 43, "ces_fig2": 43, "ces_ax2": 43, "0x7f9eb2146160": 43, "dimension_reduction_ensemble_similar": 43, "dres_conv": 43, "52983036": 43, "41177493": 43, "31770319": 43, "24269804": 43, "18980852": 43, "13913721": 43, "06342056": 43, "03125632": 43, "dres_fig": 43, "dres_ax": 43, "sklearn": [43, 44], "principalcomponentanalysi": [43, 44], "svd_solver": [43, 44], "dres_conv2": 43, "dimensionality_reduction_method": [43, 44], "appar": 43, "dres_fig2": 43, "dres_ax2": 43, "0x7f9e98499ee0": 43, "unus": [44, 105], "mpl_toolkit": [44, 48], "mplot3d": [44, 48], "axes3d": [44, 48], "stochast": 44, "proxim": 44, "gaussian": [44, 45], "kernel": [44, 87], "scott": 44, "bandwidth": 44, "natur": 44, "symbol": [44, 81], "exact": [44, 108], "twice": 44, "dres0": 44, "68134177": 44, "68452079": 44, "66369356": 44, "reduced_coordin": 44, "300": [44, 52, 57, 114], "li": 44, "zip_data_with_label": 44, "rd_dcd": 44, "rd_dcd2": 44, "rd_namd": 44, "rdfig0": 44, "rdax0": 44, "0x7fd2165443a0": 44, "adjust": 44, "magnitud": 44, "max_lam": 44, "min_lam": 44, "ncycl": 44, "nstep": 44, "dim_red_method": 44, "stochasticproximityembeddingn": 44, "nsampl": 44, "dres1": 44, "reduced1": 44, "rdfig1": 44, "rdax1": 44, "0x7fd1d0c7ad00": 44, "pc4": 44, "dres2": 44, "dim": [44, 49, 55], "littl": [44, 90], "rd_p1": 44, "rd_p2": 44, "rd_p3": 44, "violin": 44, "distant": 44, "rd_p1_fig": 44, "rd_p1_ax": 44, "split_data": 44, "violinplot": 44, "showextrema": 44, "mainli": 44, "rd_p2_fig": 44, "rd_p2_ax": 44, "0x7fd21662ec10": 44, "rd_p3_fig": 44, "rd_p3_ax": 44, "set_zlabel": 44, "0x7fd216582df0": 44, "24545978": 44, "60069985": 44, "59556372": 44, "06153911": 44, "05076614": 44, "03881675": 44, "u4": [45, 46], "mu": 45, "sigma": [45, 48], "shrinkag": 45, "cov_estim": 45, "ml": 45, "symmetris": 45, "kullback": 45, "leibler": 45, "1f": 45, "24955": 45, "1879874": 45, "145622": 45, "1659867": 45, "161102": 45, "9900092": 45, "ensemble1_mean": 45, "domanski": [45, 52, 53], "benthal": [45, 52, 53], "rostrup": [45, 52, 53], "austin": [45, 52, 53], "tx": [45, 52, 53], "pmcid": [45, 52], "pmc3144279": [45, 52], "biol": [45, 50, 52], "ej": [45, 50], "jr": [45, 50], "tb": [45, 50], "mol": [45, 50, 63, 78, 87, 105, 113], "psa": 46, "sktb15": [46, 104], "u5": 46, "psanalysi": 46, "path_select": 46, "core_sel": 46, "generate_path": 46, "delta_h": 46, "max_": 46, "nearest": [46, 57], "greatest": 46, "commut": 46, "directed_hausdorff": 46, "33312648": 46, "37206002": 46, "04737477": 46, "55204678": 46, "3991666": 46, "07957562": 46, "55032598": 46, "42282661": 46, "74534554": 46, "67052252": 46, "dendrogram": 46, "hierarchi": [46, 98], "linkag": 46, "ward": 46, "640x480": 46, "plot_annotated_heatmap": 46, "delta_": 46, "gamma_": 46, "coupl": 46, "sequenc": [46, 81, 82, 93, 103, 109], "equiv": 46, "p_": 46, "a_1": 46, "q_": 46, "b_1": 46, "a_2": 46, "b_2": 46, "a_l": 46, "b_l": 46, "b_i": 46, "discrete_frechet": 46, "33312649": 46, "37205967": 46, "04737475": 46, "55204694": 46, "39916723": 46, "07957565": 46, "55032613": 46, "42282569": 46, "74534511": 46, "67052241": 46, "avishek": [46, 104], "thorp": [46, 104], "e1004568": [46, 104], "1004568": [46, 104], "densityanalysi": [48, 105], "ipygani": 48, "tip4p": [48, 113], "broken": [48, 50, 105], "boundari": [48, 105, 106, 112], "view1": 48, "add_represent": [48, 50, 55], "licoric": 48, "density_analysis_imag": 48, "density_analysi": 48, "cross": [48, 87], "wall": 48, "closest": 48, "tabl": [48, 105, 109, 113], "trjconv": 48, "unwrap": [48, 105, 109, 112], "pbc": [48, 52, 105, 108], "symmetr": 48, "center_in_box": [48, 55, 112], "fit_rot_tran": [48, 112], "rot": 48, "tran": [48, 55, 112], "odd": 48, "placement": 48, "gmx": [48, 89, 94, 96, 114], "add_transform": [48, 55, 112], "view2": 48, "lineardens": [48, 49, 105], "ow": [48, 106], "pad": 48, "0x1444979d0": 48, "convert_length": 48, "convert_dens": 48, "precomput": [48, 113], "nm": [48, 57, 66, 113], "bulk": 48, "ambient": 48, "trivial": 48, "mx": 48, "mz": 48, "rgba": 48, "130": [48, 106], "201": 48, "float": [48, 83, 105, 108, 109, 112], "255": 48, "meshgrid": 48, "nglviewer": 48, "isolevel": 48, "contour": 48, "wirefram": 48, "isolevel_typ": 48, "meanin": 48, "smooth": 48, "view3": 48, "add_compon": 48, "clear_represent": 48, "add_surfac": 48, "cyan": 48, "cube": [48, 49], "lewin": 48, "skimag": 48, "iso_v": 48, "vert": [48, 109], "face": 48, "marching_cub": 48, "plot_trisurf": 48, "iso": 48, "pv": [48, 57], "set_plot_them": 48, "mesh": 48, "structuredgrid": 48, "transpos": 48, "plotter": 48, "background_color": 48, "white": [48, 83], "add_mesh": 48, "outlin": [48, 53], "screenshot": 48, "png": [48, 57], "unfortun": [48, 50, 102], "opaqu": 48, "snippet": 48, "jupyter_backend": 48, "literatur": 48, "interpol": 48, "smoother": 48, "bicub": 48, "nvt": 49, "lin": 49, "binsiz": 49, "verifi": 49, "mass_dens": [49, 105], "00053562": 49, "00080344": 49, "00876945": 49, "03507781": 49, "00107125": 49, "00348155": 49, "00241031": 49, "02791523": 49, "04277601": 49, "0175389": 49, "00160687": 49, "00133906": 49, "00026781": 49, "03400656": 49, "0196814": 49, "02339659": 49, "0135559": 49, "keysview": 49, "slice_volum": 49, "625": 49, "mass_density_stddev": 49, "00122727": 49, "01688797": 49, "01691979": 49, "00177646": 49, "00279604": 49, "02179554": 49, "02689655": 49, "02096112": 49, "001312": 49, "01700328": 49, "03402765": 49, "02131476": 49, "01957657": 49, "charge_dens": [49, 105], "00022158": 49, "00033237": 49, "00132949": 49, "00044316": 49, "00144029": 49, "00099712": 49, "00210503": 49, "00066475": 49, "00055396": 49, "00011079": 49, "00177266": 49, "charge_density_stddev": 49, "00050771": 49, "00108553": 49, "00073491": 49, "00115669": 49, "00111344": 49, "00112985": 49, "00054276": 49, "00088633": 49, "0018406": 49, "00129204": 49, "hist_bin_edg": [49, 105], "46": [49, 52, 57, 81, 82, 98, 106], "47": [49, 57, 81, 82, 103, 109], "float32": [49, 103], "0x7f5d682b3b20": 49, "scratch": 50, "natom": 50, "n_segment": 50, "atom_resindex": [50, 114], "resindic": [50, 87, 109], "residue_segindex": 50, "segindic": [50, 109], "attach": [50, 103], "veloc": [50, 58, 61, 63, 66, 71, 88, 89, 94, 105, 111, 114], "resindex": [50, 109], "assert": 50, "3000": [50, 83], "topologyattr": [50, 105], "counter": 50, "iqmol": 50, "h2o": 50, "95908": 50, "02691": 50, "03231": 50, "hydrogen": [50, 84, 98, 105, 106], "28004": 50, "58767": 50, "70556": 50, "grid_siz": 50, "71996": 50, "coord_arrai": 50, "sol_view": 50, "ball": 50, "hasattr": [50, 53, 109], "topologygroup": [50, 109], "phosphotransferas": 50, "protein_view": 50, "cog": [50, 106], "cog2": 50, "22634681": 50, "79514029": 50, "24595657": 50, "78155009e": 50, "27156576e": 50, "97364299e": 50, "66508082": 50, "60502842": 50, "33355791": 50, "30580288e": 50, "49225059e": 50, "51332265e": 50, "combined_view": 50, "no_overlap": 50, "no_overlap_view": 50, "pictur": 50, "grai": 50, "yellow": 50, "core_seg": 50, "core_atom": 50, "2744": 50, "nmp_segment": 50, "lid_seg": 50, "nmp_atom": 50, "lid_atom": 50, "chainid": [50, 61, 65, 81, 82, 83, 97, 105, 109], "domain_view": 50, "bigger": 50, "editconf": 50, "triclin": [50, 67, 105], "cubic": [50, 87, 111], "roughli": 50, "23912": 50, "tile_univers": 50, "n_x": 50, "n_y": 50, "n_z": 50, "u_": 50, "move_bi": 50, "new_univers": 50, "new_box": 50, "tiled_view": 50, "richardjgow": 50, "gist": 50, "openmm": [51, 58, 61, 105], "pmd": 52, "prm7_ala2": 52, "rst7_ala2": 52, "pprm": 52, "load_fil": 52, "amberparm": 52, "3026": 52, "1003": 52, "3025": 52, "parameter": 52, "bondtyp": [52, 80], "req": 52, "229": 52, "mprm": 52, "restrt": [52, 58, 59, 61], "n3": [52, 107], "parametr": [52, 108], "mprm_convert": 52, "convert_to": 52, "useabl": 52, "mprm_from_parm": 52, "434": 52, "010": 52, "sophist": 52, "protein_shel": 52, "prm_protein_shel": 52, "155": [52, 98], "154": 52, "mm": 52, "app": 52, "statedatareport": 52, "mdcrdreport": 52, "createsystem": 52, "nonbondedmethod": 52, "nocutoff": 52, "constraint": [52, 87], "implicitsolv": 52, "gbn2": 52, "langevin": 52, "langevinintegr": 52, "kelvin": 52, "bath": 52, "friction": 52, "coeffici": 52, "femtosecond": [52, 66, 68, 113], "setposit": 52, "minimizeenergi": 52, "maxiter": 52, "stdout": 52, "ala2_shel": 52, "nc": [52, 58, 59, 61], "potentialenergi": 52, "kineticenergi": 52, "trj": [52, 58, 59, 61, 68, 79, 114], "kilocalori": 52, "mole": 52, "gram": 52, "millilit": 52, "20000000000000015": 52, "623": 52, "6779995219885": 52, "140631869613383": 52, "603": 52, "5373676523751": 52, "74314071570579": 52, "45325": 52, "8064191062": 52, "034909350700361955": 52, "4000000000000003": 52, "614": 52, "1849904397706": 52, "40737137186695": 52, "575": 52, "7776190679035": 52, "55559436896063": 52, "6000000000000004": 52, "606": 52, "5526783580306": 52, "61919832973248": 52, "557": [52, 82], "933480028298": 52, "153": 52, "87503334950912": 52, "400": [52, 57, 114], "8000000000000006": 52, "600": [52, 57, 98, 114], "0374380078872": 52, "988937528818184": 52, "542": [52, 78], "0485004790689": 52, "183": 52, "52934648642113": 52, "0000000000000007": 52, "2854886173518": 52, "46589388029852": 52, "523": 52, "8195947370533": 52, "251": 52, "50182419815255": 52, "trjreader": [52, 88], "peter": 52, "eastman": 52, "jason": 52, "swail": 52, "john": 52, "chodera": 52, "mcgibbon": 52, "yutong": 52, "zhao": 52, "kyle": 52, "beauchamp": 52, "lee": 52, "ping": 52, "simmonett": 52, "harrigan": 52, "chaya": 52, "stern": 52, "rafal": 52, "wiewiora": 52, "brook": 52, "vijai": 52, "pand": 52, "e1005659": 52, "central": 53, "upgrad": [53, 100, 105, 108], "fundament": [53, 56, 114], "concept": [53, 56, 98], "being": [53, 56, 61, 93, 102, 105], "trr": [53, 57, 58, 59, 61, 94, 103, 111, 114], "47681": [53, 103, 114], "remaind": 53, "bunch": 53, "structure_onli": 53, "my_pdb_fil": 53, "213": 53, "thought": [53, 99, 105, 111], "last_fiv": 53, "3337": 53, "ha1": 53, "3338": 53, "3339": 53, "3340": 53, "ot1": 53, "languag": [53, 107], "pymol": [53, 96], "318": 53, "319": [53, 82], "320": 53, "3271": 53, "oe2": 53, "3272": 53, "3273": 53, "inclus": [53, 93, 105, 106], "c_": 53, "glutam": 53, "histidin": 53, "hsd": [53, 107], "hse": [53, 107], "proton": 53, "crucial": [53, 106, 108], "rundown": 53, "ht1": 53, "ht2": 53, "ht3": 53, "hb1": [53, 98], "hb2": [53, 98], "cg": [53, 84], "hg2": 53, "sd": 53, "he1": 53, "he2": 53, "he3": 53, "near_met": 53, "groupbi": [53, 108], "asn": [53, 107], "gln": [53, 106, 107], "664622": 53, "393473": 53, "983231": 53, "414839": 53, "4344215": 53, "5134845": 53, "959755": 53, "612923": 53, "6132305": 53, "290068": 53, "075991": 53, "79665166": 53, "011126": 53, "7638984": 53, "130355": 53, "total_charg": [53, 109], "radius_of_gyr": [53, 109, 111], "bsphere": [53, 109], "06808195": 53, "25614133": 53, "75524844": 53, "accur": [53, 105], "incorrectli": [53, 83, 84, 105], "calcium": [53, 60], "inaccur": 53, "improp": [53, 61, 66, 84, 86, 97, 109, 114], "nhh": 53, "angle_nhh": 53, "matter": [53, 84, 87, 106, 109], "apex": 53, "hnh": 53, "angle_hnh": 53, "106": 53, "assess": 53, "rgyr": 53, "0f": 53, "6690": 53, "6732": 53, "7315": 53, "7223": 53, "7440": 53, "7185": 53, "7741": 53, "7764": 53, "7894": 53, "8289": 53, "8521": 53, "8549": 53, "8723": 53, "9108": 53, "9494": 53, "9810": 53, "0033": 53, "0196": 53, "0784": 53, "1265": 53, "reset": [53, 105], "rgyr_df": 53, "gyrat": [53, 105, 109], "recalcul": [53, 89], "queri": [53, 111], "updatingatomgroup": [53, 105, 106], "multi": [53, 71, 81, 82], "calpha": 53, "statement": [53, 105, 108], "divers": 53, "toggl": 53, "galleri": 53, "simpl": [53, 83, 95, 98, 104, 112], "Not": 53, "sub": [53, 66], "852774844656239": 53, "rmsd_analysi": 53, "0x140451fd0": 53, "n_select": 53, "rmsd_df": 53, "263638e": 53, "443850e": 53, "235205e": 53, "934167e": 53, "939111e": 53, "748416e": 53, "371346e": 53, "052780e": 53, "279498e": 53, "154986e": 53, "dmitri": 53, "2010": 53, "1561": 53, "1563": 53, "my_script": 53, "hidden": [53, 89, 94, 104], "blog": [55, 100, 105, 112], "nicer": 55, "border": 55, "protein_cent": 55, "triclinic_dimens": 55, "box_cent": 55, "luckili": 55, "not_protein": 55, "protein2": 55, "not_protein2": 55, "onward": [55, 105], "otf": 55, "accompani": 57, "remark": [57, 81, 82], "xvgreader": 57, "xvgfileread": 57, "footprint": 57, "edrread": [57, 105], "xvg_bz2": 57, "cobrotoxin": 57, "aux": 57, "auxread": [57, 105], "0x7f23e7d58fd0": 57, "stand": 57, "alon": 57, "71288": 57, "1552": 57, "2849": 57, "128": [57, 82], "4072": [57, 105], "1386": 57, "0378": 57, "2699": 57, "3118": 57, "1082": 57, "6454": 57, "658": [57, 98], "32166": 57, "493": 57, "02954": 57, "8844": 57, "739": 57, "2124": 57, "246": 57, "27269": 57, "52911": 57, "484": 57, "32501": 57, "2332": 57, "3767": 57, "1801": 57, "6234": 57, "get_auxreader_for": 57, "add_auxiliari": 57, "pdb_xvf": 57, "trr_xvf": 57, "protein_forc": 57, "nan": [57, 108], "perfectli": 57, "u_long": 57, "967": 57, "21124": 57, "00000762939453": 57, "1084": 57, "2484": 57, "00001525878906": 57, "0000305175781": 57, "700": [57, 114], "0000610351562": 57, "800": [57, 114], "900": [57, 98, 114], "protoread": 57, "next_as_aux": 57, "iter_as_aux": 57, "particularli": [57, 83, 85], "u_short": 57, "acess": 57, "iter_auxiliari": 57, "get_aux_attribut": 57, "settabl": 57, "set_aux_attribut": 57, "data_selector": 57, "auxnam": 57, "rename_aux": 57, "replic": 57, "get_descript": 57, "represent_ts_a": 57, "initial_tim": 57, "time_selector": 57, "constant_dt": 57, "auxdata": 57, "del": [57, 96], "0x7f23b3eedcd0": 57, "get_aux_descript": 57, "desc": 57, "pressur": 57, "aux_edr": 57, "ener": 57, "dozen": 57, "unter": 57, "proper": [57, 60, 87, 108], "ryckaert": [57, 87], "bell": 57, "lj": 57, "coulomb": 57, "sr": 57, "disper": 57, "corr": 57, "coul": 57, "recip": 57, "conserv": 57, "dc": [57, 107], "constr": 57, "enthalpi": 57, "vir": 57, "xx": 57, "xz": 57, "yx": 57, "yy": 57, "yz": 57, "zx": 57, "zy": 57, "zz": 57, "surf": 57, "surften": 57, "vel": 57, "lamb": 57, "get_data": 57, "temp": 57, "all_data": 57, "facil": 57, "0x7f23b3a92910": 57, "hire": 57, "unit_dict": 57, "disabl": [57, 100, 105, 108], "convert_unit": 57, "aux_n": 57, "arbitrari": [57, 85], "53": [57, 98], "aux_edr_tpr": 57, "aux_edr_xtc": 57, "55": [57, 81, 82, 110], "term_dict": 57, "epot": 57, "525164": 57, "0625": 57, "aux_list": 57, "threshold": 57, "selected_fram": 57, "524600": 57, "trajectory_slic": 57, "67": [57, 81, 82], "monitor": 57, "memory_limit": 57, "byte": [57, 90], "mb": [57, 100], "68": [57, 98], "2e": 57, "arc": [58, 59, 61, 97, 109], "dl_poli": [58, 59, 61, 97, 105], "coor": [58, 59, 61], "card": [58, 59, 61, 97], "crdbox": [58, 59, 61], "amber": [58, 59, 61, 97, 105, 107, 109, 113], "ascii": [58, 59, 61, 97], "lammp": [58, 59, 61, 97, 103, 105, 108], "dm": [58, 59, 61, 97, 109], "desr": [58, 61, 69, 97], "ent": [58, 59, 61, 82, 93, 97, 109], "fhiaim": [58, 59, 61, 97, 109], "fhi": [58, 59, 61, 97], "gm": [58, 59, 61, 97, 109], "gamess": [58, 59, 61, 97], "hoomd": [58, 59, 61, 97], "h5md": [58, 61, 105], "IN": [58, 59, 61, 97, 109], "inpcrd": [58, 59, 61], "lammpsdump": [58, 59, 61, 97], "mdcrd": [58, 59, 61], "mol2": [58, 59, 61, 97, 105, 109], "tripo": [58, 59, 61, 97], "namdbin": [58, 61, 64], "netcdf": [58, 59, 61, 88, 105], "ncdf": [58, 59, 61], "openmmapp": [58, 61], "layer": [58, 61, 106], "openmmsimul": [58, 61], "pdbqt": [58, 59, 61, 97, 105, 109], "pqr": [58, 59, 61, 97, 105, 109], "tng": [58, 59, 61, 105], "ibisco": [58, 59, 61], "yasp": [58, 59, 61], "txyz": [58, 59, 61, 97, 109], "xpdb": [58, 59, 61, 97, 109], "compress": [58, 59, 61, 105], "nambdin": 59, "desmond": 59, "itp": [59, 61, 87], "portabl": [59, 61, 87], "transmiss": 59, "autodock": 59, "pdb2pqr": 59, "apb": 59, "xplor": [59, 61, 97], "parm7": [59, 61, 97, 109], "lossless": [59, 85, 94], "xml": [59, 61, 97, 109], "atom_typ": [60, 66], "biolog": 60, "guesser": [60, 105], "fragil": 60, "tradition": 60, "r_1": 60, "r_2": 60, "vdw": 60, "hoc": 60, "fudge_factor": 60, "likewis": [60, 87, 106], "guess_bond": [60, 109, 114], "underli": 60, "varieti": 61, "emphasi": 61, "popular": [61, 93, 99], "topology_format": [61, 93, 114], "possibli": 61, "complic": [61, 106], "surpris": 61, "encount": [61, 79, 100, 105], "scenario": [61, 79], "time_offset": 61, "openmmtopologi": 61, "atomnum": [61, 97, 109], "atomiccharg": [61, 97, 109], "record_typ": [61, 97, 98, 109], "type_indic": [61, 86, 97, 109], "chemfilesread": 62, "chemfileswrit": 62, "dlpoli": 63, "configread": 63, "dlpolypars": 63, "configpars": 63, "historyread": 63, "historypars": 63, "dl": 63, "poli": 63, "amu": 63, "dalton": 63, "kj": [63, 113], "2393": 63, "namdbinread": 64, "namdbinwrit": 64, "doubl": [64, 105], "precis": [64, 85, 94, 105, 108], "crdreader": 65, "crdwriter": 65, "crdparser": 65, "atomno": 65, "resno": 65, "ext": [65, 84], "dataread": 66, "datawrit": [66, 105], "lammpspars": [66, 76, 105], "datapars": 66, "lennard": [66, 68, 76], "jone": [66, 68, 76], "recogn": [66, 76], "atom_styl": [66, 103], "lammpsdata": 66, "header": [66, 81, 87, 91, 105], "lengthunit": [66, 68, 103], "timeunit": [66, 68, 103], "nanomet": [66, 113], "take_this_fram": 66, "dcdwriter": [67, 68, 108], "wrong": [67, 105, 114], "dcdplugin": 67, "plor": 67, "180": [67, 113], "c36b2": 67, "record": [67, 68, 81, 82, 98, 102, 105, 106, 109], "akma": [67, 68, 113], "emploi": 67, "wiki": [67, 100], "cosin": 67, "watch": 67, "autodetect": [68, 88], "dmsreader": 69, "dmsparser": 69, "sqlite": 69, "databas": 69, "chapter": 69, "gmsreader": 70, "gmsparser": 70, "firefli": 70, "uk": 70, "groread": 71, "growrit": 71, "gropars": 71, "pars": [71, 81, 83, 84, 105, 106, 114], "gsdreader": 72, "gsdparser": 72, "schema": 72, "fhiaimsread": 73, "fhiaimswrit": 73, "fhiaimspars": 73, "inpread": 74, "suffix": [74, 88, 102], "itppars": [75, 105], "dumpread": 76, "lammpsdumppars": 76, "mmtfreader": 77, "mmtfparser": 77, "quicker": 77, "mol2read": 78, "mol2writ": 78, "mol2pars": 78, "dock": 78, "previous": [78, 81, 105], "molfrompdbfil": 78, "removeh": 78, "moltomolfil": 78, "benzen": 78, "tom": 78, "wed": 78, "dec": 78, "1988": [78, 105], "no_charg": 78, "c1": [78, 106, 107], "207": 78, "091": 78, "c2": [78, 106, 107], "414": [78, 98], "c3": [78, 106, 107], "c4": [78, 106, 107], "697": 78, "c5": [78, 106, 107], "c6": [78, 107], "175": 78, "353": 78, "936": 78, "h3": 78, "h4": 78, "781": 78, "h5": 78, "939": 78, "h6": 78, "substructur": 78, "perm": 78, "ncdfreader": 79, "ncdfwriter": 79, "recognis": [79, 105, 107], "detect": [79, 86, 103], "notimplementederror": [79, 109], "scale_factor": 79, "fall": [79, 108, 109], "506": 79, "unload": 79, "parmedconvert": 80, "parmedread": 80, "parmedpars": 80, "ureybradlei": [80, 109], "pdbreader": [81, 105], "pdbwriter": [81, 105], "pdbparser": [81, 105], "serial": [81, 82, 83, 100, 103, 105, 108, 109], "resseq": [81, 82], "conect": [81, 105], "compnd": [81, 82], "endmdl": 81, "unk": [81, 82], "achar": [81, 82], "insert": [81, 82, 84, 93, 106, 109], "unoffici": 81, "lstring": [81, 82], "justifi": 81, "pdbqtreader": 82, "pdbqtwriter": 82, "pdbqtparser": 82, "substitut": [82, 112], "spec": 82, "cryst1": 82, "hetatm": [82, 83, 98, 109], "footnot": 82, "partialchrg": 82, "gasteig": 82, "peoe": 82, "atomtyp": 82, "torsion": [82, 87, 105], "notat": 82, "nsc7810": 82, "inact": 82, "a7_7": 82, "c22_23": 82, "a9_9": 82, "a11_11": 82, "a17_17": 82, "c21_21": 82, "123456789": 82, "a1": 82, "inh": 82, "054": 82, "021": 82, "002": 82, "a2": 82, "704": 82, "764": 82, "012": 82, "a3": 82, "975": 82, "431": 82, "a4": [82, 84], "070": 82, "385": [82, 98, 104], "081": 82, "a5": 82, "062": 82, "073": 82, "238": 82, "a6": 82, "306": 82, "456": 82, "226": 82, "019": 82, "a7": 82, "885": [82, 98], "114": 82, "052": 82, "a8": [82, 84], "265": 82, "621": 82, "449": 82, "a9": 82, "339": 82, "986": 82, "801": 82, "a10": 82, "667": 82, "endroot": 82, "a11": 82, "644": 82, "682": 82, "827": 82, "a16": 82, "a12": 82, "522": 82, "485": 82, "882": 82, "a15": 82, "262": 82, "209": 82, "177": 82, "a17": 82, "144": 82, "784": 82, "a14": 82, "981": 82, "910": 82, "a20": 82, "627": 82, "077": 82, "222": 82, "a13": 82, "749": 82, "135": 82, "912": 82, "a19": 82, "777": 82, "285": 82, "267": 82, "a18": 82, "650": 82, "328": 82, "c21": 82, "834": 82, "113": [82, 98], "388": 82, "o1": 82, "774": 82, "915": 82, "581": 82, "oa": 82, "o3": [82, 106, 107], "298": 82, "828": [82, 103], "endbranch": 82, "c22": 82, "535": 82, "o2": [82, 106, 107], "378": 82, "708": 82, "o4": [82, 106, 107], "659": 82, "196": [82, 98], "059": 82, "torsdof": 82, "pqrreader": 83, "pqrwriter": 83, "pqrparser": 83, "adopt": 83, "ff": 83, "recordnam": 83, "atomnam": [83, 106], "residuenam": 83, "residuenumb": 83, "shorter": 83, "anyth": [83, 100, 108], "valueerror": [83, 109], "increment": 83, "sequenti": [83, 106], "921": [83, 106], "307": 83, "410": 83, "8500": 83, "545": 83, "499": 83, "854": 83, "042": 83, "4600": 83, "2245": 83, "renumb": 83, "coordiant": 83, "electron": [83, 86, 105], "wildli": 83, "width": 83, "psfparser": 84, "flavour": 84, "caus": [84, 101, 102, 106], "encod": [84, 109], "cheq": 84, "psffre": 84, "ii": 84, "lsegid": 84, "lresid": 84, "lre": 84, "iac": 84, "amass": 84, "imov": 84, "ech": 84, "eha": 84, "i8": 84, "1x": 84, "i4": 84, "2g14": 84, "i10": 84, "psfplugin": 84, "tngreader": 85, "alongsid": 85, "storag": 85, "eas": 85, "toppars": 86, "2223": [86, 113], "atom_nam": 86, "atomic_numb": 86, "bonds_inc_hydrogen": 86, "bonds_without_hydrogen": 86, "angles_inc_hydrogen": 86, "angles_without_hydrogen": 86, "dihedrals_inc_hydrogen": 86, "dihedrals_without_hydrogen": 86, "atom_type_index": 86, "amber_atom_typ": 86, "residue_label": 86, "residue_point": 86, "tpx": 87, "ye": [87, 104], "103": 87, "116": 87, "molblock": 87, "protein_chain_a": 87, "protein_chain_b": 87, "40210": 87, "seg_": 87, "segment_index": 87, "seg_0_protein_chain_a": 87, "seg_1_protein_chain_b": 87, "seg_2_sol": 87, "hand": [87, 108], "protein_chain_xxx": 87, "xxx": 87, "463": 87, "g96": 87, "mors": 87, "fene": 87, "tabul": 87, "restraint": 87, "settl": 87, "urei": 87, "bradlei": 87, "quartic": 87, "belleman": 87, "fourier": 87, "gromacs_dir": 87, "gmxdump": 87, "gmxlib": 87, "tpxio": 87, "gmxfio_rw": 87, "gmxfio_xdr": 87, "gmxfiofio": 87, "read_tpxhead": 87, "tprreaderdevelop": 87, "read_": 87, "do_": 87, "extract_": 87, "wherev": [87, 99], "fver_err": 87, "fver": 87, "traj": 88, "orthorhomb": 88, "trrreader": 89, "trrwriter": 89, "damag": 89, "xdr": [89, 94], "disk": [89, 94], "_offset": [89, 94], "npz": [89, 94], "trjcat": [89, 94, 114], "sync": 89, "writabl": 89, "nevertheless": 89, "rebuilt": [89, 102], "workaround": [89, 94], "regener": [89, 94], "refresh_offset": [89, 94], "1893": [89, 94], "trzreader": [90, 105], "trzwriter": 90, "endian": 90, "txyzread": 91, "txyzpars": 91, "hoomdxmlpars": 92, "informatin": 92, "node": [92, 100], "anywai": 92, "unitless": 92, "extendedpdbread": 93, "extendedpdbpars": 93, "act": [93, 111], "digit": 93, "confin": 93, "reserv": 93, "xtcreader": 94, "xtcwriter": 94, "uncompress": [94, 105], "xyzread": 95, "xyzwrit": 95, "xyzpars": 95, "loos": 95, "xyzplugin": 95, "compat": [95, 100, 101, 102, 105, 108], "definiton": 95, "whenc": 95, "NOT": 95, "coord": 95, "atomn": 95, "moment": [95, 105, 106, 109], "selectionwrit": 96, "ndx": 96, "jmol": 96, "spt": 96, "pml": 96, "situat": [96, 100], "ala_select": 96, "tcl": 96, "sel": 96, "atomselect": 96, "gui": 96, "singleword": 96, "mdanalysis001": 96, "mdanalysis002": 96, "tyr_thr": 96, "make_ndx": 96, "301": 96, "140": 96, "nr": 96, "splitch": 96, "enter": 96, "splitr": 96, "splitat": 96, "char": [96, 105], "sensit": [96, 106], "ri": 96, "direcli": 96, "gromacswrapp": 96, "foremost": 98, "compos": 98, "knowledg": [98, 105], "lysh": [98, 107], "seg_0_protein_a": 98, "caution": [98, 105], "intend": [98, 100], "stringio": 98, "402": 98, "919": 98, "578": 98, "287": 98, "415": 98, "405": 98, "954": 98, "168": 98, "416": 98, "821": 98, "946": 98, "164": 98, "417": 98, "958": 98, "968": 98, "418": 98, "551": [98, 103], "935": 98, "743": 98, "ha3": 98, "225": 98, "313": [98, 108], "492": 98, "249": 98, "ter": 98, "1929": 98, "n1": [98, 107], "275": 98, "239": [98, 103], "1029": 98, "408": 98, "612": 98, "814": 98, "1030": 98, "529": 98, "537": 98, "038": 98, "1031": 98, "914": 98, "374": 98, "1032": 98, "904": 98, "918": 98, "1033": 98, "835": 98, "889": 98, "613": 98, "1034": 98, "636": 98, "727": 98, "1035": 98, "592": 98, "707": 98, "1036": 98, "583": 98, "783": 98, "1037": 98, "998": 98, "983": 98, "1038": 98, "hb3": 98, "788": 98, "635": 98, "554": 98, "123": 98, "713": 98, "969": 98, "223": 98, "550": 98, "460": 98, "309": 98, "018": [98, 104], "745": 98, "1042": 98, "349": 98, "234": 98, "601": 98, "1043": 98, "290": 98, "845": 98, "1044": 98, "593": 98, "976": 98, "395": 98, "1045": 98, "430": 98, "831": 98, "residues_by_seg": 98, "seg": [98, 106], "p_seg": 98, "rg": [98, 107], "me": 98, "selected_atom": 98, "all_residu": 98, "heavi": [98, 105], "sidechain": 98, "atoms_in_residu": 98, "p_re": 98, "simplifi": 98, "rd": 98, "all_atoms_in_residu": 98, "reachabl": 98, "travers": 98, "lysozym": 98, "2lyz": 98, "230": 98, "tpr2021": 98, "1960": 98, "1959": 98, "1961": 98, "nov": 99, "2023": [99, 105], "overwhelm": 99, "pick": [99, 102, 108], "relationship": 99, "ground": 99, "abid": 99, "background": 99, "listen": 99, "understand": 99, "viewpoint": 99, "blame": 99, "focu": 99, "mistak": [99, 114], "anybodi": 99, "privat": 99, "everybodi": 99, "plan": [100, 105], "openmp": 100, "daili": 100, "microsoft": 100, "studio": 100, "visualstudio": 100, "scroll": 100, "clean": 100, "exclud": [100, 105], "jupyterlab": 100, "nodej": 100, "labextens": 100, "cython": [100, 105], "pytest": [100, 105, 108], "pyarg": 100, "xfail": [100, 108], "xdist": [100, 105, 108], "numprocess": [100, 108], "extra_cflag": 100, "architectur": [100, 105], "tune": [100, 105], "mtune": 100, "mcpu": 100, "cpu": 100, "x86_64": [100, 105], "autovectoris": 100, "arm": [100, 105], "platform": 100, "powerpc": 100, "dicuss": 100, "elsewher": 100, "usabl": 100, "supercomput": 100, "login": 100, "experienc": 100, "__future__": 101, "absolute_import": 101, "print_funct": 101, "divis": 101, "six": 101, "666": 101, "189": 101, "__init__": [101, 102], "underestim": 101, "nonstandard": 101, "principl": 101, "1159": 101, "notifi": 101, "portion": 101, "guard": 101, "patch": 102, "semant": 102, "introduc": [102, 105], "incompat": [102, 105], "backward": [102, 105], "stabil": 102, "metadata": 102, "monoton": 102, "declar": [102, 108], "freez": 102, "discord": 102, "version_numb": 102, "deploy": 102, "action": 102, "adequ": [102, 108], "commit": [102, 105], "tarbal": 102, "pipx": 102, "sdist": 102, "deploi": [102, 108], "testpypi": 102, "successfulli": 102, "bumpi": 102, "yank": 102, "osx": [102, 105], "arm64": [102, 105], "linux": [102, 105], "aarch64": [102, 105], "whl": 102, "twine": 102, "presens": 102, "feedstock": 102, "meta": 102, "yaml": [102, 108], "bump": 102, "pin": 102, "conda_build_config": 102, "syrupi": 102, "confirm": 102, "gen_release_not": 102, "flaki": 102, "ey": 102, "twitter": 102, "round": [102, 108], "json": 102, "trajectory1": 103, "trajectory2": 103, "stitch": 103, "jump": 103, "depict": 103, "part01": 103, "part02": 103, "part03": 103, "part04": 103, "ultim": 103, "responsibl": 103, "meaningfulli": 103, "chainread": [103, 105, 114], "adk_oplsaa": [103, 114], "suffici": [103, 108], "sped": 103, "substanti": [103, 108], "decis": 103, "transfer_to_memori": 103, "subsequ": 103, "017": 103, "555": 103, "188": 103, "722": 103, "039": 103, "342": 103, "072": 103, "988": [103, 105], "684": 103, "324": 103, "804": 103, "961": 103, "753": 103, "rand": 103, "95849204": 103, "7487938": 103, "9704986": 103, "42354256": 103, "2889326": 103, "06184179": 103, "5241738": 103, "642687": 103, "6946113": 103, "7527609": 103, "1350824": 103, "80041414": 103, "1707926": 103, "5413459": 103, "8568687": 103, "0265642": 103, "16363254": 103, "5556602": 103, "universe2": 103, "alpha_al": 103, "alpha_skip2": 103, "alpha_som": 103, "unsupport": 103, "2887": 103, "unpickl": [103, 114], "afterward": 103, "g_pickl": 103, "u_pickl": 103, "h_pickl": 103, "yourscript": 104, "yourmodul": 104, "duecredit_en": 104, "thank": 104, "visit": 104, "2021": [104, 105], "berk": 104, "hess": 104, "031910": 104, "00348": 104, "ap": 104, "1103": 104, "physrev": 104, "janin": [104, 105], "gia": 104, "maisuradz": 104, "adam": 104, "liwo": 104, "harold": 104, "scheraga": 104, "329": 104, "pmc2652707": 104, "arallel": 104, "olecular": 104, "ynamic": 104, "nalysi": 104, "hri": 104, "allowai": 104, "avid": 104, "ippa": 104, "illon": 104, "iederhut": 104, "hupe": 104, "roceed": 104, "ython": 104, "cienc": 104, "onfer": 104, "hiromu": 104, "tatsuo": 104, "biopolym": 104, "673": 104, "679": 104, "1967": 104, "bip": 104, "360050708": 104, "arxiv": 104, "bugfix": 105, "serv": 105, "revert": 105, "v2": [105, 108], "oldest": 105, "4261": 105, "in1d": 105, "isin": 105, "prepart": 105, "4255": 105, "4237": 105, "4246": 105, "n0a": 105, "4167": 105, "4168": 105, "clarif": 105, "survivalprob": 105, "4247": 105, "4248": 105, "pillos": 105, "gplv3": 105, "addition": 105, "44733fc214dcfdcc2b7cb3e3705258781bb491bd": 105, "lgplv2": 105, "upcom": 105, "nep29": 105, "runtim": 105, "ffast": 105, "intel": 105, "center_of_charg": [105, 109], "incorrect": [105, 114], "4220": 105, "gzip": 105, "bzip2": 105, "4163": 105, "accident": 105, "4003": 105, "exclude_sam": 105, "4161": 105, "4170": 105, "4191": 105, "4198": 105, "4160": 105, "4174": 105, "4153": 105, "offici": 105, "4176": 105, "better": [105, 108], "gplv2": 105, "apach": 105, "4219": 105, "misspelt": 105, "boltzman_const": 105, "favour": 105, "spelt": 105, "boltzmann_const": 105, "4230": 105, "4214": 105, "4200": 105, "mohitkumar020291": 105, "4182": 105, "shubx10": 105, "4184": 105, "ztimol": 105, "wheel": 105, "3657": 105, "4008": 105, "3906": 105, "distance_typ": 105, "waterbridgeanalysi": 105, "4040": 105, "4066": 105, "unknown": 105, "formal": 105, "4027": 105, "led": 105, "4092": 105, "4091": 105, "cg1": 105, "og": 105, "sg": 105, "4108": 105, "4109": 105, "4075": 105, "4076": 105, "4073": 105, "4074": 105, "shape_paramet": [105, 109], "aspher": [105, 109], "3002": 105, "3905": 105, "edr": 105, "3999": 105, "pairij": 105, "coeff": 105, "3336": 105, "3988": 105, "4054": 105, "atomicdist": 105, "3654": 105, "4105": 105, "4140": 105, "3825": 105, "molecule_tag": 105, "3548": 105, "progressbar_kwarg": 105, "progressbar": 105, "4085": 105, "nojump": 105, "3703": 105, "4031": 105, "3904": 105, "4047": 105, "distopia": 105, "backend": 105, "calc_bond": 105, "3783": 105, "3914": 105, "1785": 105, "3887": 105, "3953": 105, "4115": 105, "3983": 105, "einsteinmsd": 105, "_conclude_simpl": 105, "_conclude_fft": 105, "4070": 105, "nucleicacid": 105, "nucpairdist": 105, "watsoncrickdist": 105, "pair_dist": 105, "3744": 105, "rdkitconvert": 105, "3996": 105, "monatomic_cation_charg": 105, "standardization_react": 105, "fine": 105, "unpair": 105, "neighbor": 105, "runreactantinplac": 105, "bespok": 105, "transfer": 105, "mglagolev": 105, "3959": 105, "chrispfa": 105, "4009": 105, "ooprathamm": 105, "4010": 105, "meetb7": 105, "4022": 105, "parmar": 105, "4032": 105, "moschaeffl": 105, "4049": 105, "jandom": 105, "4043": 105, "xhgchen": 105, "4037": 105, "drdomenicomarson": 105, "ahm": 105, "salah00": 105, "4059": 105, "schlaicha": 105, "jvermaa": 105, "sophiaruan": 105, "marinegor": 105, "g2707": 105, "4089": 105, "danieljamesevan": 105, "2gb": 105, "4039": 105, "4015": 105, "histogramdd": 105, "3976": 105, "streamlines_3d": 105, "streamlin": 105, "truth": 105, "3977": 105, "month": 105, "outreachi": 105, "umak": 105, "gsoc": 105, "bfedder": 105, "auxialliari": 105, "3749": 105, "aya9aladdin": 105, "hmacdop": 105, "3765": 105, "isolay": 105, "3846": 105, "3844": 105, "3890": 105, "readerbas": 105, "pathlib": 105, "3935": 105, "3848": 105, "extra_requir": 105, "favor": 105, "extra_format": 105, "3810": 105, "auxilliari": 105, "libmdanalysi": 105, "3913": 105, "sequence_align": 105, "bio": 105, "pairwisealign": 105, "pairwise2": 105, "3951": 105, "3894": 105, "sequence_alig": 105, "3958": 105, "jaclark5": 105, "pgbarletta": 105, "3876": 105, "jfennick": 105, "3832": 105, "hakarishirenai": 105, "3956": 105, "macosx": 105, "deal": 105, "corrupt": 105, "100000": [105, 113], "formalcharg": [105, 109], "3755": 105, "3687": 105, "3721": 105, "3710": 105, "3701": 105, "3711": 105, "eoss4": 105, "grant": 105, "3730": 105, "3683": 105, "shortli": 105, "modern": 105, "3415": 105, "classic": 105, "3678": 105, "1300": 105, "3680": 105, "3671": 105, "2508": 105, "3617": 105, "invers": 105, "3596": 105, "2703": 105, "accuraci": 105, "3044": 105, "chembl30": 105, "monatom": 105, "sulfur": 105, "phosphoru": 105, "conjug": 105, "watson": 105, "crick": 105, "3611": 105, "3664": 105, "3685": 105, "undefin": 105, "singlefram": 105, "3423": 105, "rewind": [105, 110], "3416": 105, "compet": 105, "3375": 105, "openmmtopologypars": 105, "3317": 105, "3511": 105, "covariance_matrix": 105, "3539": 105, "3621": 105, "3571": 105, "3572": 105, "subst_id": 105, "subst_nam": 105, "3385": 105, "3598": 105, "getmonomerinfor": 105, "getnam": 105, "noimplicit": 105, "throw": 105, "sanitizationerror": 105, "3386": 105, "3403": 105, "bat": 105, "3501": 105, "smarts_kwarg": 105, "overrid": 105, "3469": 105, "3470": 105, "contactanalysi": 105, "2666": 105, "3565": 105, "po": 105, "stddev": 105, "permiss": 105, "impact": [105, 114], "3556": 105, "lack": [105, 108], "hope": 105, "dielectr": 105, "2118": 105, "3514": 105, "h5mdreader": 105, "3466": 105, "3429": 105, "chiral": [105, 109], "3445": 105, "minimize_vector": 105, "3472": 105, "3183": 105, "3512": 105, "surfac": 105, "3419": 105, "3443": 105, "3437": 105, "typeerror": 105, "claim": 105, "3092": 105, "3257": 105, "1760": 105, "3543": 105, "sole": 105, "lammpsdumpread": 105, "3358": 105, "3115": 105, "2863": 105, "2917": 105, "intra_bond": 105, "intra_angl": 105, "intra_dihedr": 105, "1264": 105, "2821": 105, "3200": 105, "groamc": 105, "3180": 105, "preliminari": 105, "ppc64le": 105, "3127": 105, "2956": 105, "3149": 105, "3054": 105, "2927": 105, "refactor": 105, "2452": 105, "2468": 105, "from_smil": 105, "aromat": [105, 109], "dsiplac": 105, "2438": 105, "2668": 105, "pave": 105, "2723": 105, "h5mdwriter": 105, "762": 105, "2866": 105, "3364": 105, "2977": 105, "3305": 105, "3352": 105, "atttempt": 105, "2728": 105, "3314": 105, "3119": 105, "3144": 105, "3030": 105, "2422": 105, "2984": 105, "isus": 105, "2811": 105, "filter": 105, "cysh": [105, 107], "2898": 105, "layout": 105, "1738": 105, "din": 105, "2739": 105, "2746": 105, "tprparser": 105, "tpr_resid_from_on": 105, "deafult": 105, "2364": 105, "3152": 105, "write_next_timestep": 105, "density_from_univers": 105, "density_from_pdb": 105, "bfactor2rmsf": 105, "notwithin_coordinates_factori": 105, "2827": 105, "waterdynam": 105, "hydrogenbondlifetim": 105, "2842": 105, "2913": 105, "alias": 105, "1901": 105, "generate_t": 105, "3261": 105, "mvc": 105, "19xx": 105, "test_aug": 105, "190": 106, "phrase": 106, "sph_6": 106, "prop": 106, "understood": 106, "circumv": 106, "parenthes": 106, "dmpc": 106, "seq": 106, "gl": 106, "glx29": 106, "yn": 106, "fnmatch": 106, "nucleicbackbon": 106, "o5": [106, 107], "nucleicbas": 106, "nucleobas": 106, "nucleicsugar": 106, "sugar": 106, "colon": 106, "1a": 106, "1c": 106, "insensit": 106, "spc": [106, 113], "selector": 106, "crystal": 106, "protein_a": 106, "aren": 106, "lysin": 106, "externalradiu": 106, "zone": 106, "sphlayer": 106, "innerradiu": 106, "inner": 106, "cyzon": 106, "zmax": 106, "zmin": 106, "cylindr": 106, "cylind": 106, "neg": 106, "cylay": 106, "subkeyword": 106, "byre": 106, "subselect": 106, "11th": 106, "bynum": 106, "5th": 106, "preced": 106, "entireti": 106, "absent": 106, "invok": 106, "corner": 106, "ag_upd": 106, "behav": 106, "lazili": 106, "redund": 106, "923": 106, "chained_ag_upd": 106, "static_ag": 106, "elimin": 106, "opl": 107, "gromo": 107, "53a6": 107, "99sb": 107, "ildn": 107, "ac": 107, "alad": 107, "argn": 107, "asf": 107, "ash": 107, "asn1": 107, "asph": 107, "cala": 107, "carg": 107, "casf": 107, "casn": 107, "casp": 107, "ccy": 107, "ccyx": 107, "cgln": 107, "cglu": 107, "cgly": 107, "chid": 107, "chie": 107, "chip": 107, "cile": 107, "cleu": 107, "cly": 107, "cme": 107, "cmet": 107, "cphe": 107, "cpro": 107, "cser": 107, "cthr": 107, "ctrp": 107, "ctyr": 107, "cval": 107, "cym": 107, "cys1": 107, "cys2": 107, "cyx": 107, "dab": 107, "glh": 107, "gluh": 107, "hid": 107, "hie": 107, "hip": 107, "his1": 107, "his2": 107, "hisa": 107, "hisb": 107, "hisd": 107, "hise": 107, "hish": 107, "hsp": 107, "hyp": 107, "lyn": 107, "mse": 107, "nala": 107, "narg": 107, "nasn": 107, "nasp": 107, "ncy": 107, "ncyx": 107, "ngln": 107, "nglu": 107, "ngly": 107, "nhid": 107, "nhie": 107, "nhip": 107, "nile": 107, "nleu": 107, "nly": 107, "nme": 107, "nmet": 107, "nphe": 107, "npro": 107, "nser": 107, "nthr": 107, "ntrp": 107, "ntyr": 107, "nval": 107, "orn": 107, "pglu": 107, "phe": 107, "qln": 107, "trp": 107, "ra5": 107, "ra3": 107, "gua": 107, "ru3": 107, "da5": 107, "da3": 107, "ru5": 107, "thy": 107, "ru": 107, "ura": 107, "rc3": 107, "dc5": 107, "dt5": 107, "dt3": 107, "ra": 107, "dg5": 107, "dc3": 107, "rg5": 107, "rc5": 107, "dg": 107, "rc": 107, "cyt": 107, "dg3": 107, "rg3": 107, "o6": 107, "c8": 107, "n6": 107, "n4": 107, "n2": 107, "n9": 107, "c5m": 107, "n7": 107, "firstli": 108, "succe": 108, "predict": 108, "importantli": 108, "engin": 108, "carpentri": 108, "strength": 108, "worth": 108, "habit": 108, "cover": 108, "embrac": 108, "driven": 108, "repetit": 108, "desir": [108, 109, 112], "un": 108, "caught": 108, "test_align": 108, "testcontactmatrix": 108, "test_analysi": 108, "test_spars": 108, "cov": 108, "htmlcov": 108, "rebas": 108, "ideal": 108, "star": 108, "starlark": 108, "servic": 108, "categori": [108, 109], "ratio": 108, "futher": 108, "light": 108, "test_": 108, "plain": 108, "test_foo_is_length_3": 108, "foo": 108, "assert_almost_equ": 108, "test_equal_coordin": 108, "assert_equ": 108, "test_equal_arrai": 108, "array1": 108, "array2": 108, "assert_array_equ": 108, "assert_array_almost_equ": 108, "scalar": 108, "assertionerror": 108, "_privat": 108, "314": 108, "err_msg": 108, "isscalar": 108, "msg": 108, "316": 108, "317": 108, "isdesnat": 108, "isnat": 108, "nose": 108, "assert_rais": 108, "test_for_error": 108, "indexerror": 108, "test_for_warn": 108, "deprecated_funct": 108, "tested_expected_failur": 108, "test_open": 108, "tmpdir": 108, "skipif": 108, "shares_memori": 108, "test_positions_share_memori": 108, "original_and_copi": 108, "importorskip": 108, "module_nam": 108, "test_write_trajectory_netcdf4": 108, "_test_write_trajectori": 108, "ref_filenam": 108, "test_pdb_writ": 108, "thumb": 108, "fragindic": 108, "test_center_of_mass_compounds_speci": 108, "chdir": 108, "weird": 108, "556": 108, "as_cwd": 108, "test_write_no_arg": 108, "temp_fil": 108, "regress": 108, "legaci": 108, "unmaintain": 108, "receiv": 108, "consensu": 108, "emerg": 108, "confidenti": 108, "everyon": 108, "licenc": 108, "package_data": 108, "vice": 109, "versa": 109, "plural": 109, "segindex": 109, "alia": 109, "chargegroup": 109, "epsilon14": 109, "gbscreen": 109, "nbindex": 109, "nbindic": 109, "rmin": 109, "rmin14": 109, "solventradiu": 109, "solventradii": 109, "type_index": 109, "338e": 109, "339e": 109, "340e": 109, "res1": 109, "res2": 109, "res3": 109, "new_nam": 109, "notimplementederrortraceback": 109, "0f99b0dc5f49": 109, "int64": 109, "topologyobject": [109, 114], "is_guess": 109, "add_bond": 109, "add_angl": 109, "add_dihedr": 109, "add_improp": 109, "valueerrortraceback": 109, "e59c36ab66f4": 109, "770653826924175": 109, "delete_bond": 109, "delete_angl": 109, "delete_dihedr": 109, "delete_improp": 109, "04223882": 109, "01418196": 109, "03504874": 109, "bbox": 109, "pack_into_box": 109, "rotate_bi": 109, "boldsymbol": 109, "q_i": 109, "r_i": 109, "dipole_mo": 109, "dipol": 109, "dipole_vector": 109, "quadrupole_mo": 109, "quadrupol": 109, "quadrupole_tensor": 109, "traceless": 109, "tensor": 109, "align_principal_axi": 109, "gyration_mo": 109, "moment_of_inertia": 109, "principal_ax": 109, "frameiter": 110, "shift": [110, 111], "fiter": 110, "meet": 110, "9999999119200186": 111, "9999996476800743": 111, "669018368649777": 111, "743960893217544": 111, "78938645874581": 111, "87231363208217": 111, "003316543310998": 111, "with_box": 111, "u_with_box": 111, "silent": 112, "align_transform": 112, "up_by_2": 112, "up_by_x": 112, "up_by_5": 112, "set_box": 112, "cm": 113, "si": 113, "66053892103219": 113, "602176565": 113, "66053906660": 113, "kg": 113, "get_conversion_factor": 113, "femtomet": 113, "fm": 113, "picomet": 113, "pm": 113, "molar": 113, "1660": 113, "3718": 113, "8566": 113, "8864": 113, "0063": 113, "4548": 113, "microsecond": 113, "1e": 113, "millisecond": 113, "nanosecond": 113, "001": 113, "sec": 113, "\u03bc": 113, "60218e": 113, "0488882": 113, "66054e": 113, "newton": 113, "kcal": 113, "239006": 113, "ev": 113, "0103643": 113, "appl": 114, "invent": 114, "carl": 114, "sagan": 114, "cosmo": 114, "ti": 114, "arbitrarili": 114, "pdbfile": 114, "traj1": 114, "traj2": 114, "blurri": 114, "constructor": 114, "all_coordin": 114, "vdwradii": 114, "in_memory_step": 114, "nth": 114, "is_anchor": 114, "anchor_nam": 114, "prm": 114, "default_timestep": 114, "user_timestep": 114, "ligand": 114, "stage": 114, "constructing_univers": 114}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"advanc": [0, 28], "topologi": [0, 50, 61, 75, 86, 87, 97, 109, 114], "concept": 0, "ad": [0, 3, 4, 50, 109], "residu": [0, 23, 24, 98, 107], "segment": [0, 50, 98], "univers": [0, 10, 13, 50, 57, 109, 114], "molecul": [0, 48], "custom": [0, 13, 100, 112], "topologyattr": [0, 109], "atomgroup": [1, 13, 22, 53, 96, 109, 114], "creat": [1, 3, 4, 14, 16, 28, 50, 52, 87, 102, 109, 114], "an": [1, 13, 14, 16, 30, 103, 109], "atom": [1, 13, 22, 23, 24, 28, 31, 36, 37, 40, 52, 53, 56, 81, 98, 103, 106], "select": [1, 13, 23, 24, 28, 37, 52, 53, 57, 96, 103, 106, 107], "languag": [1, 106], "index": [1, 106], "slice": [1, 110], "group": [1, 19, 21, 28, 36, 37, 53, 98], "oper": 1, "set": [1, 13, 42, 44], "method": [1, 16, 18, 42, 43, 44, 46, 53, 109, 114], "groupbi": 1, "split": [1, 15], "construct": [1, 50, 114], "from": [1, 16, 53, 86, 109, 114], "order": [1, 30, 106], "uniqu": 1, "empti": 1, "dynam": [1, 53, 106], "updat": [1, 102], "contribut": [2, 3, 4, 16], "mdanalysi": [2, 3, 16, 52, 61, 87, 99, 101, 105, 107, 108, 113], "where": [2, 3], "start": [2, 53], "version": [2, 87, 100, 102], "control": 2, "git": 2, "github": [2, 3, 108], "get": [2, 53, 102], "main": 3, "codebas": 3, "work": [3, 30, 53], "code": [3, 101], "fork": [3, 4], "develop": [3, 4, 86, 87, 89, 91, 100, 102], "environ": [3, 4], "With": 3, "conda": [3, 100, 102], "pip": [3, 100], "virtualenv": 3, "On": [3, 4, 112], "mac": 3, "build": [3, 4, 102, 103], "branch": [3, 102], "write": [3, 10, 16, 18, 53, 65, 66, 67, 71, 79, 81, 82, 83, 89, 96, 103, 108], "new": [3, 10, 50, 105, 108], "format": [3, 57, 59, 61, 77, 82, 87, 103, 109], "python": 3, "modul": [3, 101, 108], "depend": [3, 7, 101], "cython": 3, "test": [3, 4, 100, 101, 105, 108], "your": [3, 16, 18], "document": [3, 4, 99, 102], "ensur": 3, "pep8": 3, "complianc": 3, "mandatori": 3, "darker": 3, "option": [3, 101], "commit": [3, 4], "push": 3, "rebas": 3, "pull": 3, "request": 3, "docstr": 3, "guidelin": 3, "chang": [3, 4, 56, 105], "doc": 3, "abstract": 3, "base": [3, 57, 113], "class": [3, 16], "view": 3, "interact": [3, 48], "user": [4, 99], "guid": [4, 53, 99], "clone": 4, "save": 4, "state": 4, "jupyt": 4, "notebook": 4, "pytest": 4, "nbval": 4, "sanit": 4, "hole2": [4, 30], "userguid": [4, 102], "automat": [4, 53], "us": [4, 28, 30, 38, 43, 52, 57, 87, 98, 104, 108], "pre": 4, "hook": 4, "exampl": [5, 6, 112], "data": [5, 13, 26, 30, 57, 66, 108], "mdanalysistest": 5, "mdanalysisdata": 5, "gener": [6, 46, 85, 87, 101, 108], "analysi": [6, 7, 15, 16, 18, 19, 20, 21, 25, 26, 34, 37, 38, 39, 42, 44, 53, 101, 108], "import": [7, 101, 108], "align": [7, 8, 9, 10, 11, 14, 46, 48], "rm": [7, 8], "fit": [7, 8], "distanc": [7, 17, 22, 23, 24, 46], "contact": [7, 17, 18, 19, 20, 21, 38], "trajectori": [7, 10, 11, 12, 13, 14, 15, 16, 19, 30, 34, 41, 46, 53, 55, 56, 57, 62, 67, 68, 70, 79, 85, 88, 89, 90, 94, 95, 103, 110, 111], "similar": [7, 41, 42, 43, 44, 45, 46, 106], "structur": [7, 9, 13, 14, 35, 53, 69, 71, 78, 80, 82, 84], "volumetr": [7, 47], "analys": [7, 15, 30, 47, 48], "dimens": [7, 30, 32, 33, 43, 44], "reduct": [7, 32, 33, 43, 44], "polym": [7, 29, 31], "membran": [7, 29], "hydrogen": [7, 25, 26, 27, 28], "bond": [7, 25, 26, 27, 28, 50, 60, 87], "anoth": 9, "load": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 57, 114], "file": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 55, 57, 62, 64, 65, 69, 71, 72, 73, 74, 75, 76, 81, 83, 84, 87, 89, 93, 94, 102, 103, 108, 114], "alignto": 9, "refer": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 59, 104], "aligntraj": 10, "copi": 10, "coordin": [10, 13, 23, 53, 58, 61], "itself": [11, 12, 36], "first": 11, "frame": [11, 15, 53, 57, 103], "third": 11, "calcul": [12, 13, 14, 20, 21, 22, 23, 24, 26, 27, 28, 31, 36, 37, 40, 42, 44, 45, 48], "pairwis": 12, "rmsd": [12, 13, 53], "background": [12, 13, 14, 15, 18, 19, 20, 21, 30], "between": [12, 13, 22, 23, 28, 42, 44, 45, 52], "two": [12, 13, 23, 36], "root": [13, 14], "mean": [13, 14], "squar": [13, 14], "deviat": 13, "multipl": [13, 15, 19, 42, 44, 96, 103], "plot": [13, 14, 18, 19, 20, 21, 22, 23, 24, 30, 37, 42, 44, 45, 46, 48], "weight": 13, "mass": [13, 49, 60], "fluctuat": 14, "over": [14, 19, 56, 57], "averag": [14, 36, 48], "rmsf": 14, "visualis": [14, 30, 34, 48], "b": 14, "factor": 14, "parallel": [15, 108], "radiu": [15, 16, 19], "gyrat": [15, 16], "serial": 15, "simpl": [15, 106], "per": 15, "fashion": 15, "wise": [15, 22, 24], "form": 15, "function": [15, 16, 18, 26, 36, 40, 108], "multiprocess": 15, "dask": 15, "appli": 15, "combin": 15, "block": 15, "result": [15, 26], "other": [15, 16, 51], "possibl": 15, "approach": 15, "see": 15, "also": 15, "own": [16, 18], "transform": [16, 48, 54, 55, 112], "1": [16, 105], "defin": [16, 18, 19, 21], "__init__": 16, "2": [16, 105], "_single_fram": 16, "nativ": [18, 19], "salt": 18, "bridg": 18, "fraction": 19, "hard": 19, "cutoff": [19, 21], "singl": [19, 53, 96], "soft": 19, "q1": 20, "v": 20, "q2": 20, "number": [21, 102], "within": [21, 24], "match": [22, 23], "ca": 22, "period": 22, "boundari": 22, "condit": 22, "all": [23, 24, 27, 28, 55, 61], "non": [23, 33], "arrai": 23, "heatmap": 23, "each": [24, 49], "basic": 26, "find": [26, 27, 28], "water": [26, 48, 50], "access": [26, 57], "helper": 26, "further": 26, "store": 26, "lifetim": 27, "time": [27, 113], "constant": [27, 113], "intermitt": 27, "individu": 27, "guess_acceptor": 28, "guess_hydrogen": 28, "more": 28, "specif": [28, 40, 78, 81, 82, 83, 84, 86, 87, 95, 109], "pore": 30, "hole": 30, "pdb": [30, 81, 82, 93], "vmd": 30, "surfac": [30, 48], "profil": 30, "paramet": [30, 42, 44], "delet": [30, 109], "determin": 31, "persist": 31, "length": [31, 113], "choos": 31, "chain": 31, "backbon": [31, 107], "linear": 33, "diffus": 33, "map": 33, "princip": 34, "compon": 34, "project": 34, "reduc": 34, "dimension": [34, 43], "space": 34, "measur": [34, 43], "converg": [34, 43], "cosin": 34, "content": 34, "radial": [36, 40], "distribut": [36, 40], "protein": [37, 48, 50, 55, 84, 107], "dihedr": [37, 60, 87], "angl": [37, 60, 87], "ramachandran": 37, "janin": 37, "elast": 38, "network": 38, "gaussian": 38, "model": 38, "onli": 38, "close": 38, "helix": 39, "run": [39, 87, 108], "rdf": 40, "site": 40, "The": [40, 109], "without": 40, "densiti": [40, 48, 49, 113], "cluster": [42, 43], "ensembl": [42, 43, 44, 45], "default": [42, 43, 44, 109], "one": [42, 44], "try": [42, 44], "out": [42, 44, 53, 65, 66, 67, 71, 79, 81, 82, 83, 89], "differ": [42, 43, 44, 52, 108], "estim": [42, 44], "error": [42, 44], "evalu": 43, "argument": [43, 57], "compar": [43, 46], "harmon": 45, "geometr": [46, 106], "path": 46, "hausdorff": 46, "discret": 46, "fr\u00e9chet": 46, "solvent": [48, 55], "around": 48, "center": [48, 55], "make": 48, "whole": 48, "fly": [48, 55, 112], "matplotlib": 48, "3d": 48, "static": 48, "nglview": 48, "scikit": 48, "imag": 48, "triangul": 48, "pyvista": 48, "2d": 48, "comput": 49, "charg": [49, 113], "axi": 49, "modifi": [50, 106, 109], "popul": 50, "blank": 50, "attribut": [50, 57, 61, 86, 97, 109, 114], "posit": [50, 53, 56], "merg": 50, "tile": 50, "larger": 50, "acknowledg": 50, "parm": [52, 80], "openmm": 52, "simul": 52, "system": [52, 109], "quick": 53, "overview": [53, 61], "inform": [53, 58, 61, 109], "citat": [53, 104], "duecredit": [53, 104], "box": 55, "befor": 55, "unwrap": 55, "wrap": 55, "back": 55, "do": [55, 56], "thi": 55, "frequent": 56, "ask": 56, "question": 56, "why": [56, 99], "auxiliari": 57, "support": [57, 58, 61, 87, 96, 97], "xvg": 57, "read": [57, 58, 61, 65, 66, 67, 70, 71, 72, 76, 79, 81, 82, 83, 84, 85, 87, 88, 89, 94, 95, 96, 97, 103], "directli": 57, "pass": 57, "iter": 57, "recreat": 57, "edr": 57, "standalon": 57, "usag": 57, "unit": [57, 113], "handl": 57, "memori": [57, 103], "tabl": [58, 61, 97], "reader": [58, 61], "guess": [60, 114], "type": 60, "improp": [60, 87], "parser": [61, 97], "chemfil": 62, "config": 63, "dl_poli": 63, "histori": 63, "coor": 64, "nambdin": 64, "namd": [64, 67, 84], "binari": 64, "restart": [64, 74], "crd": 65, "charmm": [65, 67, 84], "card": 65, "lammp": [66, 67, 68, 76], "dcd": [67, 68], "flexibl": 68, "dm": 69, "desmond": 69, "molecular": 69, "gm": 70, "gamess": 70, "gro": 71, "gromac": [71, 75, 87, 89, 94], "gsd": 72, "hoomd": [72, 92], "IN": 73, "fhiaim": 73, "fhi": 73, "aim": 73, "input": [73, 103, 108], "inpcrd": 74, "restrt": 74, "amber": [74, 79, 86, 88], "itp": 75, "portabl": 75, "lammpsdump": 76, "ascii": [76, 88], "dump": 76, "mmtf": 77, "macromolecular": 77, "transmiss": 77, "mol2": 78, "tripo": 78, "ncdf": 79, "nc": 79, "netcdf": 79, "ent": 81, "standard": [81, 107], "cryst1": 81, "field": 81, "hetatm": 81, "pdbqt": 82, "autodock": 82, "extens": 82, "pqr": 83, "pdb2pqr": 83, "apb": 83, "psf": 84, "xplor": 84, "tng": 85, "next": [85, 102], "top": 86, "prmtop": 86, "parm7": 86, "pars": [86, 87], "keyword": [86, 106], "note": [86, 87, 89, 91, 95, 105], "tpr": 87, "tprparser": 87, "segid": 87, "chainid": 87, "entri": 87, "trj": 88, "mdcrd": 88, "crdbox": 88, "trr": 89, "lossless": 89, "trz": 90, "ibisco": 90, "yasp": 90, "txyz": 91, "arc": 91, "tinker": 91, "xml": 92, "xpdb": 93, "extend": 93, "xtc": 94, "compress": 94, "xyz": 95, "export": 96, "case": 98, "sequenc": 98, "list": [98, 101], "fragment": 98, "welcom": 99, "": 99, "particip": 99, "commun": 99, "instal": 100, "compil": 100, "flag": 100, "optimis": 100, "addit": 100, "dataset": 100, "rule": 101, "suit": [101, 108], "core": 101, "visual": [101, 108], "prepar": 102, "releas": [102, 105], "polici": 102, "typic": 102, "workflow": [102, 112], "summari": 102, "task": 102, "readi": 102, "packag": 102, "complet": 102, "manual": 102, "upload": 102, "cirru": [102, 108], "ci": [102, 108], "wheel": 102, "temporari": [102, 108], "forg": 102, "blog": 102, "post": 102, "outlin": 102, "increment": 102, "clean": 102, "up": 102, "old": 102, "In": 103, "transfer": 103, "output": 103, "pickl": 103, "6": 105, "bug": 105, "fix": 105, "contributor": 105, "0": 105, "major": 105, "enhanc": 105, "deprec": 105, "5": 105, "enchanc": 105, "4": 105, "3": 105, "czi": 105, "eoss": 105, "perform": 105, "improv": 105, "known": 105, "failur": 105, "issu": 105, "boolean": 106, "connect": [106, 109], "preexist": 106, "nucleic": 107, "acid": 107, "nucleobas": 107, "sugar": 107, "coverag": 108, "continu": 108, "integr": 108, "tool": 108, "action": 108, "azur": 108, "codecov": 108, "convent": 108, "assert": 108, "except": 108, "warn": 108, "fail": 108, "skip": 108, "fixtur": 108, "same": 108, "directori": 108, "canon": 109, "valu": 109, "level": 109, "object": 109, "convers": 113, "speed": 113, "forc": 113, "energi": 113, "scratch": 114, "properti": 114}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinxcontrib.bibtex": 9, "sphinx": 57}, "alltitles": {"Advanced topology concepts": [[0, "advanced-topology-concepts"]], "Adding a Residue or Segment to a Universe": [[0, "adding-a-residue-or-segment-to-a-universe"]], "Molecules": [[0, "molecules"]], "Adding custom TopologyAttrs": [[0, "adding-custom-topologyattrs"]], "AtomGroup": [[1, "atomgroup"]], "Creating an AtomGroup": [[1, "creating-an-atomgroup"]], "Atom selection language": [[1, "atom-selection-language"], [106, "atom-selection-language"]], "Indexing and slicing": [[1, "indexing-and-slicing"]], "Group operators and set methods": [[1, "group-operators-and-set-methods"]], "Groupby and split": [[1, "groupby-and-split"]], "Constructing from Atoms": [[1, "constructing-from-atoms"]], "Order and uniqueness": [[1, "order-and-uniqueness"]], "Empty AtomGroups": [[1, "empty-atomgroups"]], "Dynamically updating AtomGroups": [[1, "dynamically-updating-atomgroups"]], "Methods": [[1, "methods"]], "Contributing to MDAnalysis": [[2, "contributing-to-mdanalysis"], [16, "Contributing-to-MDAnalysis"]], "Where to start?": [[2, "where-to-start"]], "Version control, Git, and GitHub": [[2, "version-control-git-and-github"]], "Getting started with Git": [[2, "getting-started-with-git"]], "Contributing to the main codebase": [[3, "contributing-to-the-main-codebase"]], "Working with the code": [[3, "working-with-the-code"]], "Forking": [[3, "forking"]], "Creating a development environment": [[3, "creating-a-development-environment"], [4, "creating-a-development-environment"]], "With conda": [[3, "with-conda"], [3, "id1"]], "With pip and virtualenv": [[3, "with-pip-and-virtualenv"], [3, "id2"]], "On a Mac": [[3, "on-a-mac"]], "Building MDAnalysis": [[3, "building-mdanalysis"]], "Branches in MDAnalysis": [[3, "branches-in-mdanalysis"]], "Creating a branch": [[3, "creating-a-branch"]], "Writing new code": [[3, "writing-new-code"]], "Code formatting in Python": [[3, "code-formatting-in-python"]], "Modules and dependencies": [[3, "modules-and-dependencies"]], "Developing in Cython": [[3, "developing-in-cython"]], "Testing your code": [[3, "testing-your-code"]], "Documenting your code": [[3, "documenting-your-code"]], "Ensure PEP8 compliance (mandatory) and format your code with Darker (optional)": [[3, "ensure-pep8-compliance-mandatory-and-format-your-code-with-darker-optional"]], "Adding your code to MDAnalysis": [[3, "adding-your-code-to-mdanalysis"]], "Committing your code": [[3, "committing-your-code"]], "Pushing your code to GitHub": [[3, "pushing-your-code-to-github"]], "Rebasing your code": [[3, "rebasing-your-code"]], "Creating a pull request": [[3, "creating-a-pull-request"]], "Working with the code documentation": [[3, "working-with-the-code-documentation"]], "Building the documentation": [[3, "building-the-documentation"]], "Where to write docstrings": [[3, "where-to-write-docstrings"]], "Guidelines for writing docstrings": [[3, "guidelines-for-writing-docstrings"]], "Documenting changes": [[3, "documenting-changes"]], "Writing docs for abstract base classes": [[3, "writing-docs-for-abstract-base-classes"]], "Adding your documentation to MDAnalysis": [[3, "adding-your-documentation-to-mdanalysis"]], "Viewing the documentation interactively": [[3, "viewing-the-documentation-interactively"]], "Contributing to the user guide": [[4, "contributing-to-the-user-guide"]], "Forking and cloning the User Guide": [[4, "forking-and-cloning-the-user-guide"]], "Building the user guide": [[4, "building-the-user-guide"]], "Saving state in Jupyter notebooks": [[4, "saving-state-in-jupyter-notebooks"]], "Test with pytest and nbval": [[4, "test-with-pytest-and-nbval"]], "Sanitization": [[4, "sanitization"]], "On the hole2 notebook": [[4, "on-the-hole2-notebook"]], "Adding changes to the UserGuide": [[4, "adding-changes-to-the-userguide"]], "Automatically building documentation": [[4, "automatically-building-documentation"]], "Using pre-commit hooks": [[4, "using-pre-commit-hooks"]], "Example data": [[5, "example-data"]], "MDAnalysisTests": [[5, "mdanalysistests"]], "MDAnalysisData": [[5, "mdanalysisdata"]], "Examples": [[6, "examples"]], "General": [[6, null]], "Analysis": [[6, null], [7, "analysis"], [53, "Analysis"]], "Imports and dependencies": [[7, "imports-and-dependencies"]], "Alignments and RMS fitting": [[7, "alignments-and-rms-fitting"], [8, "alignments-and-rms-fitting"]], "Distances and contacts": [[7, "distances-and-contacts"], [17, "distances-and-contacts"]], "Trajectory similarity": [[7, "trajectory-similarity"], [41, "trajectory-similarity"]], "Structure": [[7, "structure"], [35, "structure"]], "Volumetric analyses": [[7, "volumetric-analyses"], [47, "volumetric-analyses"]], "Dimension reduction": [[7, "dimension-reduction"], [32, "dimension-reduction"]], "Polymers and membranes": [[7, "polymers-and-membranes"], [29, "polymers-and-membranes"]], "Hydrogen Bond Analysis": [[7, "hydrogen-bond-analysis"], [25, "hydrogen-bond-analysis"]], "Aligning a structure to another": [[9, "Aligning-a-structure-to-another"]], "Loading files": [[9, "Loading-files"], [10, "Loading-files"], [11, "Loading-files"], [12, "Loading-files"], [13, "Loading-files"], [14, "Loading-files"], [15, "Loading-files"], [16, "Loading-files"], [18, "Loading-files"], [19, "Loading-files"], [20, "Loading-files"], [21, "Loading-files"], [22, "Loading-files"], [23, "Loading-files"], [24, "Loading-files"], [26, "Loading-files"], [27, "Loading-files"], [28, "Loading-files"], [31, "Loading-files"], [33, "Loading-files"], [34, "Loading-files"], [36, "Loading-files"], [37, "Loading-files"], [38, "Loading-files"], [39, "Loading-files"], [40, "Loading-files"], [42, "Loading-files"], [43, "Loading-files"], [44, "Loading-files"], [45, "Loading-files"], [46, "Loading-files"], [48, "Loading-files"], [49, "Loading-files"], [55, "Loading-files"]], "Aligning a structure with align.alignto": [[9, "Aligning-a-structure-with-align.alignto"]], "References": [[9, "References"], [10, "References"], [11, "References"], [12, "References"], [13, "References"], [14, "References"], [15, "References"], [16, "References"], [18, "References"], [19, "References"], [20, "References"], [21, "References"], [22, "References"], [23, "References"], [24, "References"], [26, "References"], [27, "References"], [28, "References"], [30, "References"], [31, "References"], [33, "References"], [34, "References"], [36, "References"], [37, "References"], [38, "References"], [39, "References"], [40, "References"], [42, "References"], [43, "References"], [44, "References"], [45, "References"], [45, "id5"], [46, "References"], [48, "References"], [49, "References"], [50, "References"], [52, "References"], [53, "References"], [55, "References"], [104, "references"]], "Aligning a trajectory to a reference": [[10, "Aligning-a-trajectory-to-a-reference"]], "Aligning a trajectory with AlignTraj": [[10, "Aligning-a-trajectory-with-AlignTraj"]], "Copying coordinates into a new Universe": [[10, "Copying-coordinates-into-a-new-Universe"]], "Writing trajectories to a file": [[10, "Writing-trajectories-to-a-file"]], "Aligning a trajectory to itself": [[11, "Aligning-a-trajectory-to-itself"]], "Aligning a trajectory to the first frame": [[11, "Aligning-a-trajectory-to-the-first-frame"]], "Aligning a trajectory to the third frame": [[11, "Aligning-a-trajectory-to-the-third-frame"]], "Calculating the pairwise RMSD of a trajectory": [[12, "Calculating-the-pairwise-RMSD-of-a-trajectory"]], "Background": [[12, "Background"], [13, "Background"], [14, "Background"], [15, "Background"], [18, "Background"], [19, "Background"], [20, "Background"], [21, "Background"], [30, "Background"]], "Pairwise RMSD of a trajectory to itself": [[12, "Pairwise-RMSD-of-a-trajectory-to-itself"]], "Pairwise RMSD between two trajectories": [[12, "Pairwise-RMSD-between-two-trajectories"]], "Calculating the root mean square deviation of atomic structures": [[13, "Calculating-the-root-mean-square-deviation-of-atomic-structures"]], "RMSD between two sets of coordinates": [[13, "RMSD-between-two-sets-of-coordinates"]], "RMSD of a Universe with multiple selections": [[13, "RMSD-of-a-Universe-with-multiple-selections"]], "Plotting the data": [[13, "Plotting-the-data"]], "RMSD of an AtomGroup with multiple selections": [[13, "RMSD-of-an-AtomGroup-with-multiple-selections"]], "Weighted RMSD of a trajectory": [[13, "Weighted-RMSD-of-a-trajectory"]], "Mass": [[13, "Mass"]], "Custom weights": [[13, "Custom-weights"]], "Calculating the root mean square fluctuation over a trajectory": [[14, "Calculating-the-root-mean-square-fluctuation-over-a-trajectory"]], "Creating an average structure": [[14, "Creating-an-average-structure"]], "Aligning the trajectory to a reference": [[14, "Aligning-the-trajectory-to-a-reference"]], "Calculating RMSF": [[14, "Calculating-RMSF"]], "Plotting RMSF": [[14, "Plotting-RMSF"]], "Visualising RMSF as B-factors": [[14, "Visualising-RMSF-as-B-factors"]], "Parallelizing analysis": [[15, "Parallelizing-analysis"]], "Radius of gyration": [[15, "Radius-of-gyration"], [16, "Radius-of-gyration"]], "Serial Analysis": [[15, "Serial-Analysis"]], "Parallelization in a simple per-frame fashion": [[15, "Parallelization-in-a-simple-per-frame-fashion"]], "Frame-wise form of the function": [[15, "Frame-wise-form-of-the-function"]], "Parallelization with multiprocessing": [[15, "Parallelization-with-multiprocessing"]], "Parallelization with dask": [[15, "Parallelization-with-dask"]], "Parallelization in a split-apply-combine fashion": [[15, "Parallelization-in-a-split-apply-combine-fashion"]], "Block analysis function": [[15, "Block-analysis-function"]], "Split the trajectory": [[15, "Split-the-trajectory"]], "Apply the analysis per block": [[15, "Apply-the-analysis-per-block"]], "Combine the results": [[15, "Combine-the-results"]], "Other possible parallelism approaches for multiple analyses": [[15, "Other-possible-parallelism-approaches-for-multiple-analyses"]], "See Also": [[15, "See-Also"]], "Writing your own trajectory analysis": [[16, "Writing-your-own-trajectory-analysis"]], "Creating an analysis from a function": [[16, "Creating-an-analysis-from-a-function"]], "Transforming a function into a class": [[16, "Transforming-a-function-into-a-class"]], "Creating your own class": [[16, "Creating-your-own-class"]], "1. Define __init__": [[16, "1.-Define-__init__"]], "2. Define your analysis in _single_frame() and other methods": [[16, "2.-Define-your-analysis-in-_single_frame()-and-other-methods"]], "Write your own native contacts analysis method": [[18, "Write-your-own-native-contacts-analysis-method"]], "Defining salt bridges": [[18, "Defining-salt-bridges"]], "Define your own function": [[18, "Define-your-own-function"]], "Plotting": [[18, "Plotting"], [19, "Plotting"], [19, "id6"], [19, "id7"], [20, "Plotting"], [21, "Plotting"], [22, "Plotting"], [22, "id4"], [23, "Plotting"], [24, "Plotting"], [24, "id4"], [30, "Plotting"], [30, "id8"], [37, "Plotting"], [42, "Plotting"], [42, "id5"], [42, "id6"], [44, "Plotting"], [44, "id5"], [44, "id6"], [45, "Plotting"], [46, "Plotting"], [46, "id5"]], "Fraction of native contacts over a trajectory": [[19, "Fraction-of-native-contacts-over-a-trajectory"]], "Defining the groups for contact analysis": [[19, "Defining-the-groups-for-contact-analysis"], [21, "Defining-the-groups-for-contact-analysis"]], "Hard cutoff with a single reference": [[19, "Hard-cutoff-with-a-single-reference"]], "Radius cutoff": [[19, "Radius-cutoff"]], "Soft cutoff and multiple references": [[19, "Soft-cutoff-and-multiple-references"]], "Multiple references": [[19, "Multiple-references"]], "Soft cutoff": [[19, "Soft-cutoff"]], "Q1 vs Q2 contact analysis": [[20, "Q1-vs-Q2-contact-analysis"]], "Calculating Q1 vs Q2": [[20, "Calculating-Q1-vs-Q2"]], "Contact analysis: number of contacts within a cutoff": [[21, "Contact-analysis:-number-of-contacts-within-a-cutoff"]], "Calculating number of contacts within a cutoff": [[21, "Calculating-number-of-contacts-within-a-cutoff"]], "Atom-wise distances between matching AtomGroups": [[22, "Atom-wise-distances-between-matching-AtomGroups"]], "Calculating the distance between CA atoms": [[22, "Calculating-the-distance-between-CA-atoms"]], "Calculating the distance with periodic boundary conditions": [[22, "Calculating-the-distance-with-periodic-boundary-conditions"]], "All distances between two selections": [[23, "All-distances-between-two-selections"]], "Calculating atom-to-atom distances between non-matching coordinate arrays": [[23, "Calculating-atom-to-atom-distances-between-non-matching-coordinate-arrays"]], "Plotting distance as a heatmap": [[23, "Plotting-distance-as-a-heatmap"]], "Calculating residue-to-residue distances": [[23, "Calculating-residue-to-residue-distances"]], "All distances within a selection": [[24, "All-distances-within-a-selection"]], "Calculating atom-wise distances": [[24, "Calculating-atom-wise-distances"]], "Calculating distances for each residue": [[24, "Calculating-distances-for-each-residue"]], "Calculating hydrogen bonds: the basics": [[26, "Calculating-hydrogen-bonds:-the-basics"]], "Hydrogen bonds": [[26, "Hydrogen-bonds"]], "Find water-water hydrogen bonds": [[26, "Find-water-water-hydrogen-bonds"]], "Accessing the results": [[26, "Accessing-the-results"]], "Helper functions": [[26, "Helper-functions"]], "Further analysis": [[26, "Further-analysis"]], "Store data": [[26, "Store-data"]], "Calculating hydrogen bond lifetimes": [[27, "Calculating-hydrogen-bond-lifetimes"]], "Find all hydrogen bonds": [[27, "Find-all-hydrogen-bonds"], [28, "Find-all-hydrogen-bonds"]], "Calculate hydrogen bond lifetimes": [[27, "Calculate-hydrogen-bond-lifetimes"]], "Calculating the time constant": [[27, "Calculating-the-time-constant"]], "Intermittent lifetime": [[27, "Intermittent-lifetime"]], "Hydrogen bond lifetime of individual hydrogen bonds": [[27, "Hydrogen-bond-lifetime-of-individual-hydrogen-bonds"]], "Calculating hydrogen bonds: advanced selections": [[28, "Calculating-hydrogen-bonds:-advanced-selections"]], "Use guess_acceptors and guess_hydrogens to create atom selections": [[28, "Use-guess_acceptors-and-guess_hydrogens-to-create-atom-selections"]], "More advanced selections": [[28, "More-advanced-selections"]], "Hydrogen bonds between specific groups": [[28, "Hydrogen-bonds-between-specific-groups"]], "Analysing pore dimensions with HOLE2": [[30, "Analysing-pore-dimensions-with-HOLE2"]], "Using HOLE with a PDB file": [[30, "Using-HOLE-with-a-PDB-file"]], "Using HOLE with a trajectory": [[30, "Using-HOLE-with-a-trajectory"]], "Working with the data": [[30, "Working-with-the-data"]], "Visualising the VMD surface": [[30, "Visualising-the-VMD-surface"]], "Ordering HOLE profiles with an order parameter": [[30, "Ordering-HOLE-profiles-with-an-order-parameter"]], "Deleting HOLE files": [[30, "Deleting-HOLE-files"]], "Determining the persistence length of a polymer": [[31, "Determining-the-persistence-length-of-a-polymer"]], "Choosing the chains and backbone atoms": [[31, "Choosing-the-chains-and-backbone-atoms"]], "Calculating the persistence length": [[31, "Calculating-the-persistence-length"]], "Non-linear dimension reduction to diffusion maps": [[33, "Non-linear-dimension-reduction-to-diffusion-maps"]], "Diffusion maps": [[33, "Diffusion-maps"]], "Principal component analysis of a trajectory": [[34, "Principal-component-analysis-of-a-trajectory"]], "Principal component analysis": [[34, "Principal-component-analysis"]], "Visualising projections into a reduced dimensional space": [[34, "Visualising-projections-into-a-reduced-dimensional-space"]], "Measuring convergence with cosine content": [[34, "Measuring-convergence-with-cosine-content"]], "Average radial distribution functions": [[36, "Average-radial-distribution-functions"]], "Calculating the average radial distribution function for two groups of atoms": [[36, "Calculating-the-average-radial-distribution-function-for-two-groups-of-atoms"]], "Calculating the average radial distribution function for a group of atoms to itself": [[36, "Calculating-the-average-radial-distribution-function-for-a-group-of-atoms-to-itself"]], "Protein dihedral angle analysis": [[37, "Protein-dihedral-angle-analysis"]], "Selecting dihedral atom groups": [[37, "Selecting-dihedral-atom-groups"]], "Calculating dihedral angles": [[37, "Calculating-dihedral-angles"]], "Ramachandran analysis": [[37, "Ramachandran-analysis"]], "Janin analysis": [[37, "Janin-analysis"]], "Elastic network analysis": [[38, "Elastic-network-analysis"]], "Using a Gaussian network model": [[38, "Using-a-Gaussian-network-model"]], "Using a Gaussian network model with only close contacts": [[38, "Using-a-Gaussian-network-model-with-only-close-contacts"]], "Helix analysis": [[39, "Helix-analysis"], [39, "id6"]], "Running the analysis": [[39, "Running-the-analysis"]], "Calculating the RDF atom-to-atom": [[40, "Calculating-the-RDF-atom-to-atom"]], "Calculating the site-specific radial distribution function": [[40, "Calculating-the-site-specific-radial-distribution-function"]], "The site-specific RDF without densities": [[40, "The-site-specific-RDF-without-densities"]], "Calculating the Clustering Ensemble Similarity between ensembles": [[42, "Calculating-the-Clustering-Ensemble-Similarity-between-ensembles"]], "Calculating clustering similarity with default settings": [[42, "Calculating-clustering-similarity-with-default-settings"]], "Calculating clustering similarity with one method": [[42, "Calculating-clustering-similarity-with-one-method"]], "Calculating clustering similarity with multiple methods": [[42, "Calculating-clustering-similarity-with-multiple-methods"]], "Trying out different clustering parameters": [[42, "Trying-out-different-clustering-parameters"]], "Estimating the error in a clustering ensemble similarity analysis": [[42, "Estimating-the-error-in-a-clustering-ensemble-similarity-analysis"]], "Evaluating convergence": [[43, "Evaluating-convergence"]], "Evaluating convergence with similarity measures": [[43, "Evaluating-convergence-with-similarity-measures"]], "Using default arguments with clustering ensemble similarity": [[43, "Using-default-arguments-with-clustering-ensemble-similarity"]], "Comparing different clustering methods": [[43, "Comparing-different-clustering-methods"]], "Using default arguments with dimension reduction ensemble similarity": [[43, "Using-default-arguments-with-dimension-reduction-ensemble-similarity"]], "Comparing different dimensionality reduction methods": [[43, "Comparing-different-dimensionality-reduction-methods"]], "Calculating the Dimension Reduction Ensemble Similarity between ensembles": [[44, "Calculating-the-Dimension-Reduction-Ensemble-Similarity-between-ensembles"]], "Calculating dimension reduction similarity with default settings": [[44, "Calculating-dimension-reduction-similarity-with-default-settings"]], "Calculating dimension reduction similarity with one method": [[44, "Calculating-dimension-reduction-similarity-with-one-method"]], "Calculating dimension reduction similarity with multiple methods": [[44, "Calculating-dimension-reduction-similarity-with-multiple-methods"]], "Trying out different dimension reduction parameters": [[44, "Trying-out-different-dimension-reduction-parameters"]], "Estimating the error in a dimension reduction ensemble similarity analysis": [[44, "Estimating-the-error-in-a-dimension-reduction-ensemble-similarity-analysis"]], "Calculating the Harmonic Ensemble Similarity between ensembles": [[45, "Calculating-the-Harmonic-Ensemble-Similarity-between-ensembles"]], "Calculating harmonic similarity": [[45, "Calculating-harmonic-similarity"]], "Comparing the geometric similarity of trajectories": [[46, "Comparing-the-geometric-similarity-of-trajectories"]], "Aligning trajectories": [[46, "Aligning-trajectories"]], "Generating paths": [[46, "Generating-paths"]], "Hausdorff method": [[46, "Hausdorff-method"]], "Discrete Fr\u00e9chet distances": [[46, "Discrete-Fr\u00e9chet-distances"]], "Calculating the solvent density around a protein": [[48, "Calculating-the-solvent-density-around-a-protein"]], "Centering, aligning, and making molecules whole with on-the-fly transformations": [[48, "Centering,-aligning,-and-making-molecules-whole-with-on-the-fly-transformations"]], "Analysing the density of water around the protein": [[48, "Analysing-the-density-of-water-around-the-protein"]], "Visualisation": [[48, "Visualisation"]], "matplotlib (3D static plot)": [[48, "matplotlib-(3D-static-plot)"]], "nglview (interactive)": [[48, "nglview-(interactive)"]], "scikit-image (triangulated surface)": [[48, "scikit-image-(triangulated-surface)"]], "pyvista (3D surface)": [[48, "pyvista-(3D-surface)"]], "2D averaging": [[48, "2D-averaging"]], "Computing mass and charge density on each axis": [[49, "Computing-mass-and-charge-density-on-each-axis"]], "Constructing, modifying, and adding to a Universe": [[50, "Constructing,-modifying,-and-adding-to-a-Universe"]], "Creating and populating a Universe with water": [[50, "Creating-and-populating-a-Universe-with-water"]], "Creating a blank Universe": [[50, "Creating-a-blank-Universe"]], "Adding topology attributes": [[50, "Adding-topology-attributes"]], "Adding positions": [[50, "Adding-positions"]], "Adding bonds": [[50, "Adding-bonds"]], "Merging with a protein": [[50, "Merging-with-a-protein"]], "Adding a new segment": [[50, "Adding-a-new-segment"]], "Tiling into a larger Universe": [[50, "Tiling-into-a-larger-Universe"]], "Acknowledgments": [[50, "Acknowledgments"]], "Other": [[51, "other"]], "Using ParmEd with MDAnalysis and OpenMM to simulate a selection of atoms": [[52, "Using-ParmEd-with-MDAnalysis-and-OpenMM-to-simulate-a-selection-of-atoms"]], "Loading files: the difference between ParmEd and MDAnalysis": [[52, "Loading-files:-the-difference-between-ParmEd-and-MDAnalysis"]], "Using MDAnalysis to select atoms": [[52, "Using-MDAnalysis-to-select-atoms"]], "Using ParmEd and OpenMM to create a simulation system": [[52, "Using-ParmEd-and-OpenMM-to-create-a-simulation-system"]], "Quick start guide": [[53, "Quick-start-guide"]], "Overview": [[53, "Overview"]], "Loading a structure or trajectory": [[53, "Loading-a-structure-or-trajectory"]], "Working with groups of atoms": [[53, "Working-with-groups-of-atoms"]], "Selecting atoms": [[53, "Selecting-atoms"]], "Getting atom information from AtomGroups": [[53, "Getting-atom-information-from-AtomGroups"]], "AtomGroup positions and methods": [[53, "AtomGroup-positions-and-methods"]], "Working with trajectories": [[53, "Working-with-trajectories"]], "Dynamic selection": [[53, "Dynamic-selection"]], "Writing out coordinates": [[53, "Writing-out-coordinates"]], "Single frame": [[53, "Single-frame"]], "Trajectories": [[53, "Trajectories"], [56, "trajectories"], [111, "trajectories"]], "RMSD": [[53, "RMSD"]], "Automatic citations with duecredit": [[53, "Automatic-citations-with-duecredit"]], "Transformations": [[54, "transformations"]], "Centering a trajectory in the box": [[55, "Centering-a-trajectory-in-the-box"]], "Before transformation": [[55, "Before-transformation"]], "Unwrapping the protein": [[55, "Unwrapping-the-protein"]], "Centering in the box": [[55, "Centering-in-the-box"]], "Wrapping the solvent back into the box": [[55, "Wrapping-the-solvent-back-into-the-box"]], "Doing all this on-the-fly": [[55, "Doing-all-this-on-the-fly"]], "Frequently asked questions": [[56, "frequently-asked-questions"]], "Why do the atom positions change over trajectories?": [[56, "why-do-the-atom-positions-change-over-trajectories"]], "Auxiliary files": [[57, "auxiliary-files"]], "Supported formats": [[57, "supported-formats"]], "XVG Files": [[57, "xvg-files"]], "Reading data directly": [[57, "reading-data-directly"]], "Loading data into a Universe": [[57, "loading-data-into-a-universe"]], "Passing arguments to auxiliary data": [[57, "passing-arguments-to-auxiliary-data"]], "Iterating over auxiliary data": [[57, "iterating-over-auxiliary-data"]], "Accessing auxiliary attributes": [[57, "accessing-auxiliary-attributes"]], "Recreating auxiliaries": [[57, "recreating-auxiliaries"]], "EDR Files": [[57, "edr-files"]], "Standalone Usage": [[57, "standalone-usage"]], "Unit Handling": [[57, "unit-handling"]], "Use with Trajectories": [[57, "use-with-trajectories"]], "Selecting Trajectory Frames Based on Auxiliary Data": [[57, "selecting-trajectory-frames-based-on-auxiliary-data"]], "Memory Usage": [[57, "memory-usage"]], "Coordinates": [[58, "coordinates"], [61, "coordinates"]], "Table of supported coordinate readers and the information read": [[58, "id2"], [61, "id12"]], "Format reference": [[59, "format-reference"]], "Guessing": [[60, "guessing"]], "Masses": [[60, "masses"]], "Types": [[60, "types"]], "Bonds, Angles, Dihedrals, Impropers": [[60, "bonds-angles-dihedrals-impropers"]], "Format overview": [[61, "format-overview"]], "Table of all supported formats in MDAnalysis": [[61, "id10"]], "Topology": [[61, "topology"], [97, "topology"]], "Table of supported topology parsers and the attributes read": [[61, "id11"], [97, "id1"]], "chemfiles (chemfiles Trajectory or file)": [[62, "chemfiles-chemfiles-trajectory-or-file"]], "CONFIG (DL_Poly Config)": [[63, "config-dl-poly-config"]], "HISTORY (DL_Poly Config)": [[63, "history-dl-poly-config"]], "COOR, NAMBDIN (NAMD binary restart files)": [[64, "coor-nambdin-namd-binary-restart-files"]], "CRD (CHARMM CARD files)": [[65, "crd-charmm-card-files"]], "Reading in": [[65, "reading-in"], [66, "reading-in"], [67, "reading-in"], [70, "reading-in"], [71, "reading-in"], [72, "reading-in"], [76, "reading-in"], [79, "reading-in"], [81, "reading-in"], [82, "reading-in"], [83, "reading-in"], [84, "reading-in"], [85, "reading-in"], [88, "reading-in"], [89, "reading-in"], [94, "reading-in"], [95, "reading-in"]], "Writing out": [[65, "writing-out"], [66, "writing-out"], [67, "writing-out"], [71, "writing-out"], [79, "writing-out"], [81, "writing-out"], [82, "writing-out"], [83, "writing-out"], [89, "writing-out"]], "DATA (LAMMPS)": [[66, "data-lammps"]], "DCD (CHARMM, NAMD, or LAMMPS trajectory)": [[67, "dcd-charmm-namd-or-lammps-trajectory"]], "DCD (Flexible LAMMPS trajectory)": [[68, "dcd-flexible-lammps-trajectory"]], "DMS (Desmond Molecular Structure files)": [[69, "dms-desmond-molecular-structure-files"]], "GMS (Gamess trajectory)": [[70, "gms-gamess-trajectory"]], "GRO (GROMACS structure file)": [[71, "gro-gromacs-structure-file"]], "GSD (HOOMD GSD file)": [[72, "gsd-hoomd-gsd-file"]], "IN, FHIAIMS (FHI-aims input files)": [[73, "in-fhiaims-fhi-aims-input-files"]], "INPCRD, RESTRT (AMBER restart files)": [[74, "inpcrd-restrt-amber-restart-files"]], "ITP (GROMACS portable topology files)": [[75, "itp-gromacs-portable-topology-files"]], "LAMMPSDUMP (LAMMPS ascii dump file)": [[76, "lammpsdump-lammps-ascii-dump-file"]], "MMTF (Macromolecular Transmission Format)": [[77, "mmtf-macromolecular-transmission-format"]], "MOL2 (Tripos structure)": [[78, "mol2-tripos-structure"]], "MOL2 specification": [[78, "mol2-specification"]], "NCDF, NC (AMBER NetCDF trajectory)": [[79, "ncdf-nc-amber-netcdf-trajectory"]], "ParmEd (ParmEd Structure)": [[80, "parmed-parmed-structure"]], "PDB, ENT (Standard PDB file)": [[81, "pdb-ent-standard-pdb-file"]], "PDB specification": [[81, "pdb-specification"]], "CRYST1 fields": [[81, "id1"]], "ATOM/HETATM fields": [[81, "id2"]], "PDBQT (Autodock structure)": [[82, "pdbqt-autodock-structure"]], "PDBQT specification": [[82, "pdbqt-specification"]], "PDB format with AutoDOCK extensions for the PDBQT format.": [[82, "id1"]], "PQR file (PDB2PQR / APBS)": [[83, "pqr-file-pdb2pqr-apbs"]], "PQR specification": [[83, "pqr-specification"]], "PSF (CHARMM, NAMD, or XPLOR protein structure file)": [[84, "psf-charmm-namd-or-xplor-protein-structure-file"]], "PSF specification": [[84, "psf-specification"]], "TNG (Trajectory Next Generation)": [[85, "tng-trajectory-next-generation"]], "TOP, PRMTOP, PARM7 (AMBER topology)": [[86, "top-prmtop-parm7-amber-topology"]], "AMBER specification": [[86, "amber-specification"]], "Attributes parsed from AMBER keywords": [[86, "id1"]], "Developer notes": [[86, "developer-notes"], [87, "developer-notes"], [89, "developer-notes"], [91, "developer-notes"]], "TPR (GROMACS run topology files)": [[87, "tpr-gromacs-run-topology-files"]], "Supported versions": [[87, "supported-versions"]], "TPR format versions and generations read by MDAnalysis.topology.TPRParser.parse().": [[87, "id1"]], "TPR specification": [[87, "tpr-specification"]], "segid and chainID": [[87, "segid-and-chainid"]], "Bonds": [[87, "bonds"]], "GROMACS entries used to create bonds.": [[87, "id2"]], "GROMACS entries used to create angles.": [[87, "id3"]], "GROMACS entries used to create dihedrals.": [[87, "id4"]], "GROMACS entries used to create improper dihedrals.": [[87, "id5"]], "TRJ, MDCRD, CRDBOX (AMBER ASCII trajectory)": [[88, "trj-mdcrd-crdbox-amber-ascii-trajectory"]], "TRR (GROMACS lossless trajectory file)": [[89, "trr-gromacs-lossless-trajectory-file"]], "TRZ (IBIsCO and YASP trajectory)": [[90, "trz-ibisco-and-yasp-trajectory"]], "TXYZ, ARC (Tinker)": [[91, "txyz-arc-tinker"]], "XML (HOOMD)": [[92, "xml-hoomd"]], "XPDB (Extended PDB file)": [[93, "xpdb-extended-pdb-file"]], "XTC (GROMACS compressed trajectory file)": [[94, "xtc-gromacs-compressed-trajectory-file"]], "XYZ trajectory": [[95, "xyz-trajectory"]], "XYZ specification": [[95, "xyz-specification"]], "Note": [[95, "note"]], "Selection exporters": [[96, "selection-exporters"]], "Supported selection exporters": [[96, "id2"]], "Writing selections": [[96, "writing-selections"]], "Single AtomGroup": [[96, "single-atomgroup"]], "Multiple selections": [[96, "multiple-selections"]], "Reading in selections": [[96, "reading-in-selections"]], "Groups of atoms": [[98, "groups-of-atoms"]], "Residues and Segments": [[98, "residues-and-segments"]], "Use case: Sequence of residues by segment": [[98, "use-case-sequence-of-residues-by-segment"]], "Use case: Atoms list grouped by residues": [[98, "use-case-atoms-list-grouped-by-residues"]], "Fragments": [[98, "fragments"]], "Welcome to MDAnalysis User Guide\u2019s documentation!": [[99, "welcome-to-mdanalysis-user-guide-s-documentation"]], "Why MDAnalysis?": [[99, "why-mdanalysis"]], "Participating": [[99, "participating"]], "Communications": [[99, "communications"]], "Installation": [[100, "installation"]], "conda": [[100, "conda"]], "pip": [[100, "pip"]], "Development versions": [[100, "development-versions"]], "Testing": [[100, "testing"]], "Custom compiler flags and optimised installations": [[100, "custom-compiler-flags-and-optimised-installations"]], "Additional datasets": [[100, "additional-datasets"]], "Module imports in MDAnalysis": [[101, "module-imports-in-mdanalysis"]], "General rules for importing": [[101, "general-rules-for-importing"]], "Module imports in MDAnalysis.analysis": [[101, "module-imports-in-mdanalysis-analysis"]], "Module imports in the test suite": [[101, "module-imports-in-the-test-suite"]], "Module dependencies in the code": [[101, "module-dependencies-in-the-code"]], "List of core module dependencies": [[101, "list-of-core-module-dependencies"]], "Modules in the \u201ccore\u201d": [[101, "modules-in-the-core"]], "Optional modules in MDAnalysis.analysis and MDAnalysis.visualization": [[101, "optional-modules-in-mdanalysis-analysis-and-mdanalysis-visualization"]], "Preparing a release": [[102, "preparing-a-release"]], "Release policy and release numbering": [[102, "release-policy-and-release-numbering"]], "Typical workflow for preparing a release": [[102, "typical-workflow-for-preparing-a-release"]], "Summary of tasks": [[102, "summary-of-tasks"]], "Getting the develop branch ready for a release": [[102, "getting-the-develop-branch-ready-for-a-release"]], "Packaging the release": [[102, "packaging-the-release"]], "Completing the release": [[102, "completing-the-release"]], "Manually upload Cirrus CI wheels (temporary)": [[102, "manually-upload-cirrus-ci-wheels-temporary"]], "Update conda-forge packages": [[102, "update-conda-forge-packages"]], "Create a release of the UserGuide": [[102, "create-a-release-of-the-userguide"]], "Create a blog post outlining the release": [[102, "create-a-blog-post-outlining-the-release"]], "Increment develop branch files ready for the next version": [[102, "increment-develop-branch-files-ready-for-the-next-version"]], "Clean up old developer builds of the documentation": [[102, "clean-up-old-developer-builds-of-the-documentation"]], "Reading and writing files": [[103, "reading-and-writing-files"]], "Input": [[103, "input"]], "Reading multiple trajectories": [[103, "reading-multiple-trajectories"]], "Trajectory formats": [[103, "trajectory-formats"]], "In-memory trajectories": [[103, "in-memory-trajectories"]], "Reading trajectories into memory": [[103, "reading-trajectories-into-memory"]], "Transferring trajectories into memory": [[103, "transferring-trajectories-into-memory"]], "Building trajectories in memory": [[103, "building-trajectories-in-memory"]], "In-memory trajectories of an atom selection": [[103, "in-memory-trajectories-of-an-atom-selection"]], "Output": [[103, "output"]], "Frames and trajectories": [[103, "frames-and-trajectories"]], "Pickling": [[103, "pickling"]], "Citations using Duecredit": [[104, "citations-using-duecredit"]], "MDAnalysis Release Notes": [[105, "mdanalysis-release-notes"]], "Release 2.6.1 of MDAnalysis": [[105, "release-2-6-1-of-mdanalysis"]], "Bug fixes and changes": [[105, "bug-fixes-and-changes"]], "New Contributors": [[105, "new-contributors"], [105, "id1"], [105, "id5"], [105, "id13"]], "Release 2.6.0 of MDAnalysis": [[105, "release-2-6-0-of-mdanalysis"]], "Major changes:": [[105, "major-changes"], [105, "id2"], [105, "id8"], [105, "id14"], [105, "id19"], [105, "id24"], [105, "id30"]], "Fixes:": [[105, "fixes"], [105, "id3"], [105, "id9"], [105, "id15"], [105, "id21"], [105, "id26"], [105, "id32"]], "Enhancements:": [[105, "enhancements"], [105, "id16"], [105, "id20"], [105, "id25"], [105, "id31"]], "Changes:": [[105, "changes"], [105, "id4"], [105, "id11"], [105, "id17"], [105, "id22"], [105, "id27"], [105, "id33"]], "Deprecations:": [[105, "deprecations"], [105, "id12"], [105, "id18"], [105, "id23"], [105, "id28"], [105, "id34"]], "Release 2.5.0 of MDAnalysis": [[105, "release-2-5-0-of-mdanalysis"]], "Enchancements:": [[105, "enchancements"], [105, "id10"]], "Release 2.4.3 of MDAnalysis": [[105, "release-2-4-3-of-mdanalysis"]], "Bug fixes": [[105, "bug-fixes"], [105, "id6"], [105, "id7"]], "Release 2.4.2 of MDAnalysis": [[105, "release-2-4-2-of-mdanalysis"]], "Release 2.4.1 of MDAnalysis": [[105, "release-2-4-1-of-mdanalysis"]], "Release 2.4.0 of MDAnalysis": [[105, "release-2-4-0-of-mdanalysis"]], "Release 2.3.0 of MDAnalysis": [[105, "release-2-3-0-of-mdanalysis"]], "CZI EOSS Performance Improvements:": [[105, "czi-eoss-performance-improvements"]], "Release 2.2.0 of MDAnalysis": [[105, "release-2-2-0-of-mdanalysis"]], "Known test failures:": [[105, "known-test-failures"], [105, "id29"]], "Release 2.1.0 of MDAnalysis": [[105, "release-2-1-0-of-mdanalysis"]], "Release 2.0.0 of MDAnalysis": [[105, "release-2-0-0-of-mdanalysis"]], "Notes:": [[105, "notes"]], "Known issues:": [[105, "known-issues"]], "Selection Keywords": [[106, "selection-keywords"]], "Simple selections": [[106, "simple-selections"]], "Boolean": [[106, "boolean"]], "Geometric": [[106, "geometric"]], "Similarity and connectivity": [[106, "similarity-and-connectivity"]], "Index": [[106, "index"]], "Preexisting selections and modifiers": [[106, "preexisting-selections-and-modifiers"]], "Dynamic selections": [[106, "dynamic-selections"]], "Ordered selections": [[106, "ordered-selections"]], "Standard residues in MDAnalysis selections": [[107, "standard-residues-in-mdanalysis-selections"]], "Proteins": [[107, "proteins"]], "Protein backbone": [[107, "protein-backbone"]], "Nucleic acids": [[107, "nucleic-acids"]], "Nucleic backbone": [[107, "nucleic-backbone"]], "Nucleobases": [[107, "nucleobases"]], "Nucleic sugars": [[107, "nucleic-sugars"]], "Tests in MDAnalysis": [[108, "tests-in-mdanalysis"]], "Running the test suite": [[108, "running-the-test-suite"]], "Testing in parallel": [[108, "testing-in-parallel"]], "Test coverage": [[108, "test-coverage"]], "Continuous Integration tools": [[108, "continuous-integration-tools"]], "GitHub Actions": [[108, "github-actions"]], "Azure": [[108, "azure"]], "Cirrus CI": [[108, "cirrus-ci"]], "Codecov": [[108, "codecov"]], "Writing new tests": [[108, "writing-new-tests"]], "General conventions": [[108, "general-conventions"]], "Assertions": [[108, "assertions"]], "Testing exceptions and warnings": [[108, "testing-exceptions-and-warnings"]], "Failing tests": [[108, "failing-tests"]], "Skipping tests": [[108, "skipping-tests"]], "Fixtures": [[108, "fixtures"]], "Testing the same function with different inputs": [[108, "testing-the-same-function-with-different-inputs"]], "Temporary files and directories": [[108, "temporary-files-and-directories"]], "Module imports": [[108, "module-imports"]], "Tests for analysis and visualization modules": [[108, "tests-for-analysis-and-visualization-modules"]], "Using test data files": [[108, "using-test-data-files"]], "The topology system": [[109, "the-topology-system"]], "Topology attributes": [[109, "topology-attributes"]], "Canonical attributes": [[109, "canonical-attributes"]], "Format-specific attributes": [[109, "format-specific-attributes"]], "Connectivity information": [[109, "connectivity-information"]], "Adding TopologyAttrs": [[109, "adding-topologyattrs"]], "Modifying TopologyAttrs": [[109, "modifying-topologyattrs"]], "Default values and attribute levels": [[109, "default-values-and-attribute-levels"]], "Topology objects": [[109, "topology-objects"]], "Adding to a Universe": [[109, "adding-to-a-universe"]], "Creating with an AtomGroup": [[109, "creating-with-an-atomgroup"]], "Deleting from a Universe": [[109, "deleting-from-a-universe"]], "Topology-specific methods": [[109, "topology-specific-methods"]], "Slicing trajectories": [[110, "slicing-trajectories"]], "On-the-fly transformations": [[112, "on-the-fly-transformations"]], "Example workflows": [[112, "example-workflows"]], "Custom transformations": [[112, "custom-transformations"]], "Units and constants": [[113, "units-and-constants"]], "Base units in MDAnalysis": [[113, "id1"]], "Unit conversion": [[113, "unit-conversion"]], "Constants": [[113, "constants"]], "Length": [[113, "length"]], "Density": [[113, "density"]], "Time": [[113, "time"]], "Charge": [[113, "charge"]], "Speed": [[113, "speed"]], "Force": [[113, "force"]], "Energy": [[113, "energy"]], "Universe": [[114, "universe"]], "Creating a Universe": [[114, "creating-a-universe"]], "Loading from files": [[114, "loading-from-files"]], "Constructing from AtomGroups": [[114, "constructing-from-atomgroups"]], "Constructing from scratch": [[114, "constructing-from-scratch"]], "Guessing topology attributes": [[114, "guessing-topology-attributes"]], "Universe properties and methods": [[114, "universe-properties-and-methods"]]}, "indexentries": {"x y z": [[83, "term-X-Y-Z"]], "atomname": [[83, "term-atomName"]], "chainid": [[83, "term-chainID"]], "charge": [[83, "term-charge"]], "radius": [[83, "term-radius"]], "recordname": [[83, "term-recordName"]], "residuename": [[83, "term-residueName"]], "residuenumber": [[83, "term-residueNumber"]], "serial": [[83, "term-serial"]], "duecredit_enable": [[104, "index-0"]], "environment variable": [[104, "index-0"]]}})
\ No newline at end of file
+Search.setIndex({"docnames": ["advanced_topology", "atomgroup", "contributing", "contributing_code", "contributing_docs", "datasets", "examples/README", "examples/analysis/README", "examples/analysis/alignment_and_rms/README", "examples/analysis/alignment_and_rms/aligning_structure_to_another", "examples/analysis/alignment_and_rms/aligning_trajectory", "examples/analysis/alignment_and_rms/aligning_trajectory_to_frame", "examples/analysis/alignment_and_rms/pairwise_rmsd", "examples/analysis/alignment_and_rms/rmsd", "examples/analysis/alignment_and_rms/rmsf", "examples/analysis/custom_parallel_analysis", "examples/analysis/custom_trajectory_analysis", "examples/analysis/distances_and_contacts/README", "examples/analysis/distances_and_contacts/contacts_custom", "examples/analysis/distances_and_contacts/contacts_native_fraction", "examples/analysis/distances_and_contacts/contacts_q1q2", "examples/analysis/distances_and_contacts/contacts_within_cutoff", "examples/analysis/distances_and_contacts/distances_between_atomgroups", "examples/analysis/distances_and_contacts/distances_between_selections", "examples/analysis/distances_and_contacts/distances_within_selection", "examples/analysis/hydrogen_bonds/README", "examples/analysis/hydrogen_bonds/hbonds", "examples/analysis/hydrogen_bonds/hbonds-lifetimes", "examples/analysis/hydrogen_bonds/hbonds-selections", "examples/analysis/polymers_and_membranes/README", "examples/analysis/polymers_and_membranes/hole2", "examples/analysis/polymers_and_membranes/polymer", "examples/analysis/reduced_dimensions/README", "examples/analysis/reduced_dimensions/diffusion_map", "examples/analysis/reduced_dimensions/pca", "examples/analysis/structure/README", "examples/analysis/structure/average_rdf", "examples/analysis/structure/dihedrals", "examples/analysis/structure/elastic_network", "examples/analysis/structure/helanal", "examples/analysis/structure/site_specific_rdf", "examples/analysis/trajectory_similarity/README", "examples/analysis/trajectory_similarity/clustering_ensemble_similarity", "examples/analysis/trajectory_similarity/convergence", "examples/analysis/trajectory_similarity/dimension_reduction_ensemble_similarity", "examples/analysis/trajectory_similarity/harmonic_ensemble_similarity", "examples/analysis/trajectory_similarity/psa", "examples/analysis/volumetric/README", "examples/analysis/volumetric/density_analysis", "examples/analysis/volumetric/linear_density", "examples/constructing_universe", "examples/other/README", "examples/other/parmed_sim", "examples/quickstart", "examples/transformations/README", "examples/transformations/center_protein_in_box", "faq", "formats/auxiliary", "formats/coordinates", "formats/format_reference", "formats/guessing", "formats/index", "formats/reference/chemfiles", "formats/reference/config", "formats/reference/coor", "formats/reference/crd", "formats/reference/data", "formats/reference/dcd", "formats/reference/dcd_lammps", "formats/reference/dms", "formats/reference/gms", "formats/reference/gro", "formats/reference/gsd", "formats/reference/in", "formats/reference/inpcrd", "formats/reference/itp", "formats/reference/lammpsdump", "formats/reference/mmtf", "formats/reference/mol2", "formats/reference/ncdf", "formats/reference/parmed", "formats/reference/pdb", "formats/reference/pdbqt", "formats/reference/pqr", "formats/reference/psf", "formats/reference/tng", "formats/reference/top", "formats/reference/tpr", "formats/reference/trj", "formats/reference/trr", "formats/reference/trz", "formats/reference/txyz", "formats/reference/xml", "formats/reference/xpdb", "formats/reference/xtc", "formats/reference/xyz", "formats/selection_exporters", "formats/topology", "groups_of_atoms", "index", "installation", "module_imports", "preparing_releases_and_hotfixes", "reading_and_writing", "references", "releases", "selections", "standard_selections", "testing", "topology_system", "trajectories/slicing_trajectories", "trajectories/trajectories", "trajectories/transformations", "units", "universe"], "filenames": ["advanced_topology.rst", "atomgroup.rst", "contributing.rst", "contributing_code.rst", "contributing_docs.rst", "datasets.rst", "examples/README.rst", "examples/analysis/README.rst", "examples/analysis/alignment_and_rms/README.rst", "examples/analysis/alignment_and_rms/aligning_structure_to_another.ipynb", "examples/analysis/alignment_and_rms/aligning_trajectory.ipynb", "examples/analysis/alignment_and_rms/aligning_trajectory_to_frame.ipynb", "examples/analysis/alignment_and_rms/pairwise_rmsd.ipynb", "examples/analysis/alignment_and_rms/rmsd.ipynb", "examples/analysis/alignment_and_rms/rmsf.ipynb", "examples/analysis/custom_parallel_analysis.ipynb", "examples/analysis/custom_trajectory_analysis.ipynb", "examples/analysis/distances_and_contacts/README.rst", "examples/analysis/distances_and_contacts/contacts_custom.ipynb", "examples/analysis/distances_and_contacts/contacts_native_fraction.ipynb", "examples/analysis/distances_and_contacts/contacts_q1q2.ipynb", "examples/analysis/distances_and_contacts/contacts_within_cutoff.ipynb", "examples/analysis/distances_and_contacts/distances_between_atomgroups.ipynb", "examples/analysis/distances_and_contacts/distances_between_selections.ipynb", "examples/analysis/distances_and_contacts/distances_within_selection.ipynb", "examples/analysis/hydrogen_bonds/README.rst", "examples/analysis/hydrogen_bonds/hbonds.ipynb", "examples/analysis/hydrogen_bonds/hbonds-lifetimes.ipynb", "examples/analysis/hydrogen_bonds/hbonds-selections.ipynb", "examples/analysis/polymers_and_membranes/README.rst", "examples/analysis/polymers_and_membranes/hole2.ipynb", "examples/analysis/polymers_and_membranes/polymer.ipynb", "examples/analysis/reduced_dimensions/README.rst", "examples/analysis/reduced_dimensions/diffusion_map.ipynb", "examples/analysis/reduced_dimensions/pca.ipynb", "examples/analysis/structure/README.rst", "examples/analysis/structure/average_rdf.ipynb", "examples/analysis/structure/dihedrals.ipynb", "examples/analysis/structure/elastic_network.ipynb", "examples/analysis/structure/helanal.ipynb", "examples/analysis/structure/site_specific_rdf.ipynb", "examples/analysis/trajectory_similarity/README.rst", "examples/analysis/trajectory_similarity/clustering_ensemble_similarity.ipynb", "examples/analysis/trajectory_similarity/convergence.ipynb", "examples/analysis/trajectory_similarity/dimension_reduction_ensemble_similarity.ipynb", "examples/analysis/trajectory_similarity/harmonic_ensemble_similarity.ipynb", "examples/analysis/trajectory_similarity/psa.ipynb", "examples/analysis/volumetric/README.rst", "examples/analysis/volumetric/density_analysis.ipynb", "examples/analysis/volumetric/linear_density.ipynb", "examples/constructing_universe.ipynb", "examples/other/README.rst", "examples/other/parmed_sim.ipynb", "examples/quickstart.ipynb", "examples/transformations/README.rst", "examples/transformations/center_protein_in_box.ipynb", "faq.rst", "formats/auxiliary.rst", "formats/coordinates.rst", "formats/format_reference.rst", "formats/guessing.rst", "formats/index.rst", "formats/reference/chemfiles.rst", "formats/reference/config.rst", "formats/reference/coor.rst", "formats/reference/crd.rst", "formats/reference/data.rst", "formats/reference/dcd.rst", "formats/reference/dcd_lammps.rst", "formats/reference/dms.rst", "formats/reference/gms.rst", "formats/reference/gro.rst", "formats/reference/gsd.rst", "formats/reference/in.rst", "formats/reference/inpcrd.rst", "formats/reference/itp.rst", "formats/reference/lammpsdump.rst", "formats/reference/mmtf.rst", "formats/reference/mol2.rst", "formats/reference/ncdf.rst", "formats/reference/parmed.rst", "formats/reference/pdb.rst", "formats/reference/pdbqt.rst", "formats/reference/pqr.rst", "formats/reference/psf.rst", "formats/reference/tng.rst", "formats/reference/top.rst", "formats/reference/tpr.rst", "formats/reference/trj.rst", "formats/reference/trr.rst", "formats/reference/trz.rst", "formats/reference/txyz.rst", "formats/reference/xml.rst", "formats/reference/xpdb.rst", "formats/reference/xtc.rst", "formats/reference/xyz.rst", "formats/selection_exporters.rst", "formats/topology.rst", "groups_of_atoms.rst", "index.rst", "installation.rst", "module_imports.rst", "preparing_releases_and_hotfixes.rst", "reading_and_writing.rst", "references.rst", "releases.md", "selections.rst", "standard_selections.rst", "testing.rst", "topology_system.rst", "trajectories/slicing_trajectories.rst", "trajectories/trajectories.rst", "trajectories/transformations.rst", "units.rst", "universe.rst"], "titles": ["Advanced topology concepts", "AtomGroup", "Contributing to MDAnalysis", "Contributing to the main codebase", "Contributing to the user guide", "Example data", "Examples", "Analysis", "Alignments and RMS fitting", "Aligning a structure to another", "Aligning a trajectory to a reference", "Aligning a trajectory to itself", "Calculating the pairwise RMSD of a trajectory", "Calculating the root mean square deviation of atomic structures", "Calculating the root mean square fluctuation over a trajectory", "Parallelizing analysis", "Writing your own trajectory analysis", "Distances and contacts", "Write your own native contacts analysis method", "Fraction of native contacts over a trajectory", "Q1 vs Q2 contact analysis", "Contact analysis: number of contacts within a cutoff", "Atom-wise distances between matching AtomGroups", "All distances between two selections", "All distances within a selection", "Hydrogen Bond Analysis", "Calculating hydrogen bonds: the basics", "Calculating hydrogen bond lifetimes", "Calculating hydrogen bonds: advanced selections", "Polymers and membranes", "Analysing pore dimensions with HOLE2", "Determining the persistence length of a polymer", "Dimension reduction", "Non-linear dimension reduction to diffusion maps", "Principal component analysis of a trajectory", "Structure", "Average radial distribution functions", "Protein dihedral angle analysis", "Elastic network analysis", "Helix analysis", "Calculating the RDF atom-to-atom", "Trajectory similarity", "Calculating the Clustering Ensemble Similarity between ensembles", "Evaluating convergence", "Calculating the Dimension Reduction Ensemble Similarity between ensembles", "Calculating the Harmonic Ensemble Similarity between ensembles", "Comparing the geometric similarity of trajectories", "Volumetric analyses", "Calculating the solvent density around a protein", "Computing mass and charge density on each axis", "Constructing, modifying, and adding to a Universe", "Other", "Using ParmEd with MDAnalysis and OpenMM to simulate a selection of atoms", "Quick start guide", "Transformations", "Centering a trajectory in the box", "Frequently asked questions", "Auxiliary files", "Coordinates", "Format reference", "Guessing", "Format overview", "chemfiles (chemfiles Trajectory or file)", "CONFIG (DL_Poly Config)", "COOR, NAMBDIN (NAMD binary restart files)", "CRD (CHARMM CARD files)", "DATA (LAMMPS)", "DCD (CHARMM, NAMD, or LAMMPS trajectory)", "DCD (Flexible LAMMPS trajectory)", "DMS (Desmond Molecular Structure files)", "GMS (Gamess trajectory)", "GRO (GROMACS structure file)", "GSD (HOOMD GSD file)", "IN, FHIAIMS (FHI-aims input files)", "INPCRD, RESTRT (AMBER restart files)", "ITP (GROMACS portable topology files)", "LAMMPSDUMP (LAMMPS ascii dump file)", "MMTF (Macromolecular Transmission Format)", "MOL2 (Tripos structure)", "NCDF, NC (AMBER NetCDF trajectory)", "ParmEd (ParmEd Structure)", "PDB, ENT (Standard PDB file)", "PDBQT (Autodock structure)", "PQR file (PDB2PQR / APBS)", "PSF (CHARMM, NAMD, or XPLOR protein structure file)", "TNG (Trajectory Next Generation)", "TOP, PRMTOP, PARM7 (AMBER topology)", "TPR (GROMACS run topology files)", "TRJ, MDCRD, CRDBOX (AMBER ASCII trajectory)", "TRR (GROMACS lossless trajectory file)", "TRZ (IBIsCO and YASP trajectory)", "TXYZ, ARC (Tinker)", "XML (HOOMD)", "XPDB (Extended PDB file)", "XTC (GROMACS compressed trajectory file)", "XYZ trajectory", "Selection exporters", "Topology", "Groups of atoms", "Welcome to MDAnalysis User Guide\u2019s documentation!", "Installation", "Module imports in MDAnalysis", "Preparing a release", "Reading and writing files", "References", "MDAnalysis Release Notes", "Atom selection language", "Standard residues in MDAnalysis selections", "Tests in MDAnalysis", "The topology system", "Slicing trajectories", "Trajectories", "On-the-fly transformations", "Units and constants", "Universe"], "terms": {"To": [0, 2, 3, 4, 10, 12, 16, 19, 22, 26, 27, 28, 30, 42, 43, 44, 46, 48, 50, 53, 57, 66, 86, 100, 102, 105, 108], "add": [0, 1, 3, 4, 5, 14, 15, 16, 22, 23, 24, 50, 60, 99, 100, 102, 105, 106, 108, 109, 114], "us": [0, 1, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 26, 27, 31, 33, 34, 36, 37, 39, 40, 41, 42, 44, 45, 46, 48, 50, 51, 53, 55, 58, 60, 61, 67, 72, 78, 79, 80, 81, 82, 83, 85, 86, 89, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 105, 106, 109, 110, 111, 112, 113, 114], "add_residu": [0, 105, 114], "add_seg": [0, 50, 105, 114], "method": [0, 3, 6, 7, 14, 15, 17, 19, 20, 21, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 39, 45, 48, 50, 57, 60, 96, 98, 99, 101, 103, 104, 105, 106, 108], "u": [0, 1, 5, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40, 43, 48, 49, 50, 52, 53, 55, 57, 61, 66, 70, 88, 96, 98, 103, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], "mda": [0, 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 66, 93, 96, 98, 102, 103, 105, 106, 108, 109, 110, 111, 112, 114], "psf": [0, 5, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 26, 27, 28, 33, 34, 38, 39, 42, 43, 44, 45, 46, 53, 59, 61, 82, 97, 103, 105, 106, 108, 109, 110, 111], "dcd": [0, 3, 5, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 26, 27, 28, 33, 34, 38, 39, 42, 43, 44, 45, 46, 49, 53, 58, 59, 61, 103, 105, 106, 108, 110, 111], "segmentgroup": [0, 1, 53, 98, 105, 109], "1": [0, 1, 3, 4, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 60, 61, 66, 69, 75, 78, 81, 82, 83, 84, 87, 88, 89, 91, 93, 94, 95, 96, 98, 102, 103, 104, 106, 108, 109, 110, 111, 112, 113, 114], "segid": [0, 1, 10, 26, 50, 53, 61, 65, 81, 82, 83, 105, 106, 109], "arrai": [0, 1, 7, 12, 13, 15, 16, 17, 18, 19, 21, 24, 26, 27, 30, 33, 34, 36, 37, 39, 40, 42, 43, 44, 46, 48, 49, 50, 53, 57, 98, 103, 105, 108, 109, 112], "4ake": [0, 13, 50, 53, 83, 106], "dtype": [0, 26, 30, 48, 49, 50, 98, 103, 109], "object": [0, 1, 3, 16, 20, 26, 37, 48, 50, 52, 53, 57, 58, 61, 62, 98, 105, 106, 108, 114], "newseg": 0, "x": [0, 3, 4, 12, 13, 14, 15, 16, 18, 19, 20, 21, 30, 31, 34, 44, 48, 49, 50, 53, 56, 57, 66, 67, 81, 82, 83, 87, 95, 104, 105, 106, 112], "atom": [0, 3, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 26, 27, 30, 32, 33, 34, 35, 38, 39, 41, 42, 44, 46, 48, 49, 50, 51, 55, 60, 61, 65, 66, 69, 70, 71, 75, 76, 78, 82, 83, 84, 87, 88, 89, 91, 92, 95, 96, 99, 105, 107, 108, 109, 110, 111, 112, 114], "atomgroup": [0, 6, 7, 9, 15, 16, 17, 19, 26, 31, 37, 39, 40, 50, 52, 55, 60, 71, 98, 103, 105, 106, 112], "0": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 111, 112, 113, 114], "assign": [0, 19, 24, 50, 53, 57, 60, 61, 66, 95, 105, 109, 110, 114], "last": [0, 3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 89, 99, 108, 109], "100": [0, 1, 14, 19, 26, 27, 30, 42, 44, 52, 53, 57, 87, 113, 114], "from": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 55, 56, 57, 58, 60, 61, 63, 64, 65, 66, 67, 68, 69, 72, 75, 76, 78, 79, 81, 82, 83, 84, 87, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 113], "thi": [0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 56, 57, 60, 61, 62, 66, 68, 69, 71, 75, 79, 81, 82, 83, 84, 85, 87, 88, 89, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 111, 114], "new": [0, 1, 2, 4, 9, 15, 16, 18, 19, 30, 34, 48, 53, 57, 66, 67, 87, 100, 101, 102, 103, 104, 109, 110, 111, 112, 114], "1600": 0, "anoth": [0, 1, 4, 6, 7, 8, 10, 11, 12, 14, 19, 34, 50, 53, 96, 98, 106, 108], "exampl": [0, 1, 3, 4, 7, 8, 9, 11, 13, 15, 16, 19, 26, 27, 28, 30, 34, 37, 39, 40, 42, 43, 48, 50, 52, 53, 57, 60, 66, 78, 83, 87, 96, 98, 100, 101, 102, 103, 104, 106, 108, 109, 110, 111, 113, 114], "i": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 56, 57, 60, 61, 65, 66, 67, 68, 69, 70, 71, 73, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 114], "creat": [0, 2, 9, 10, 12, 15, 19, 20, 24, 26, 30, 34, 36, 39, 49, 53, 57, 60, 71, 75, 78, 80, 81, 83, 84, 89, 94, 99, 100, 103, 105, 106, 108, 110, 112], "protein": [0, 6, 7, 9, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 34, 35, 38, 39, 42, 44, 45, 47, 52, 53, 57, 59, 98, 104, 106, 110, 111, 112, 114], "domain": [0, 7, 13, 14, 17, 19, 22, 23, 50], "In": [0, 1, 3, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 18, 19, 26, 27, 30, 33, 34, 36, 38, 42, 44, 45, 46, 48, 50, 52, 53, 57, 61, 66, 67, 79, 88, 89, 93, 96, 98, 99, 100, 101, 104, 105, 106, 108, 109, 110, 111, 112, 114], "mdanalysi": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 53, 55, 56, 57, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 100, 102, 103, 104, 106, 109, 110, 111, 112, 114], "gromac": [0, 16, 48, 50, 57, 58, 59, 61, 85, 96, 97, 98, 103, 105], "onli": [0, 2, 3, 4, 10, 12, 13, 15, 16, 26, 27, 28, 30, 31, 34, 36, 37, 48, 49, 50, 53, 55, 56, 57, 66, 70, 72, 78, 79, 83, 84, 87, 88, 91, 94, 95, 98, 99, 100, 101, 102, 103, 105, 106, 108, 109, 110, 111, 112, 114], "relev": [0, 4, 7, 26, 32, 50, 102], "some": [0, 2, 3, 9, 10, 14, 15, 22, 23, 24, 26, 27, 30, 34, 45, 46, 50, 52, 53, 55, 60, 66, 100, 102, 103, 105, 108], "analysi": [0, 1, 3, 4, 8, 9, 10, 11, 12, 13, 14, 17, 22, 23, 24, 27, 28, 30, 31, 32, 33, 35, 36, 40, 41, 43, 45, 46, 48, 49, 52, 55, 57, 85, 98, 99, 100, 103, 104, 105, 109, 110, 113, 114], "A": [0, 1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 56, 57, 60, 61, 63, 67, 71, 72, 75, 81, 82, 83, 84, 87, 88, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 113, 114], "group": [0, 13, 22, 30, 31, 34, 40, 42, 43, 49, 50, 83, 84, 96, 103, 105, 106, 108, 109, 112, 114], "consid": [0, 2, 3, 7, 13, 15, 16, 27, 32, 34, 38, 41, 42, 98, 100, 101, 106, 108, 114], "defin": [0, 3, 4, 15, 20, 22, 24, 26, 30, 31, 36, 37, 40, 42, 44, 46, 50, 53, 55, 57, 61, 67, 82, 86, 95, 96, 98, 105, 106, 108, 109], "moleculetyp": [0, 109], "section": [0, 3, 4, 9, 10, 11, 12, 13, 14, 19, 33, 53, 55, 57, 66, 81, 84, 100, 104, 105, 108], "ar": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 60, 61, 65, 66, 67, 68, 69, 70, 72, 73, 75, 76, 77, 78, 79, 81, 82, 83, 84, 87, 88, 89, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114], "file": [0, 2, 3, 4, 5, 50, 53, 56, 58, 59, 60, 61, 63, 66, 67, 68, 70, 77, 78, 79, 80, 82, 85, 86, 91, 92, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 109, 111], "e": [0, 1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 60, 67, 80, 82, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 112, 113, 114], "tpr": [0, 26, 36, 40, 48, 55, 59, 61, 71, 75, 97, 98, 103, 105, 106, 109, 112, 114], "extens": [0, 3, 4, 18, 30, 53, 57, 61, 79, 81, 88, 96, 99, 102, 103, 105], "unlik": [0, 1, 3, 7, 10, 19, 30, 32, 33, 38, 68, 69, 72, 75, 82, 106], "fragment": [0, 31, 48, 49, 50, 55, 105, 106, 108], "thei": [0, 3, 4, 7, 10, 12, 15, 16, 19, 20, 27, 32, 34, 37, 38, 42, 46, 48, 50, 57, 60, 61, 66, 79, 89, 92, 98, 100, 101, 102, 103, 105, 107, 108, 109, 111], "access": [0, 1, 3, 5, 16, 42, 50, 53, 56, 89, 94, 98, 99, 105, 106, 107, 109, 114], "directli": [0, 1, 4, 16, 18, 19, 20, 23, 30, 37, 38, 44, 48, 52, 53, 99, 102, 103, 106, 109, 111, 112], "traceback": [0, 108], "most": [0, 1, 3, 7, 10, 14, 15, 16, 26, 27, 32, 34, 39, 40, 41, 53, 60, 68, 69, 83, 87, 99, 100, 103, 105, 106, 108, 109, 114], "recent": [0, 3, 67, 87, 102, 108, 109], "call": [0, 1, 3, 4, 7, 12, 15, 16, 19, 28, 30, 32, 34, 37, 50, 53, 68, 98, 99, 105, 106, 108, 109, 112], "stdin": 0, "line": [0, 3, 12, 13, 26, 27, 30, 33, 43, 48, 49, 57, 81, 83, 91, 95, 96, 98, 100, 105, 108, 114], "modul": [0, 1, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 25, 30, 38, 39, 41, 42, 43, 44, 45, 46, 53, 55, 79, 100, 105, 109, 112], "core": [0, 2, 3, 13, 14, 15, 22, 23, 42, 44, 50, 53, 57, 83, 100, 102, 103, 105, 109, 112], "py": [0, 3, 4, 5, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 37, 38, 39, 40, 42, 43, 44, 45, 49, 53, 101, 102, 104, 105, 108], "2278": 0, "__getattr__": 0, "cl": [0, 30], "self": [0, 3, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 38, 39, 42, 43, 44, 45, 49, 108], "__class__": 0, "__name__": 0, "attr": 0, "attributeerror": 0, "ha": [0, 2, 3, 7, 9, 10, 11, 13, 14, 15, 16, 18, 19, 22, 23, 24, 28, 29, 30, 34, 36, 40, 42, 43, 44, 45, 46, 48, 50, 52, 53, 55, 70, 87, 96, 98, 100, 102, 103, 105, 106, 108, 109, 111, 114], "attribut": [0, 1, 3, 14, 15, 26, 30, 39, 40, 53, 56, 60, 65, 66, 77, 81, 83, 87, 99, 103, 105, 106, 108], "howev": [0, 1, 3, 7, 9, 10, 13, 14, 15, 16, 19, 26, 27, 30, 31, 32, 34, 39, 44, 48, 50, 52, 53, 55, 57, 67, 69, 71, 72, 84, 87, 89, 96, 98, 100, 101, 102, 103, 105, 108, 109, 114], "order": [0, 3, 7, 12, 13, 15, 16, 19, 26, 31, 32, 33, 34, 37, 42, 43, 44, 48, 52, 53, 57, 61, 66, 67, 82, 90, 98, 100, 101, 102, 103, 105, 109, 110, 111, 112, 114], "molnum": [0, 61, 87, 97, 108, 109], "name": [0, 3, 4, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 42, 43, 44, 46, 48, 50, 53, 57, 60, 61, 65, 67, 70, 78, 81, 82, 83, 86, 87, 92, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107, 108, 109, 114], "moltyp": [0, 61, 87, 97, 106, 109], "each": [0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 14, 15, 16, 21, 22, 23, 26, 27, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 44, 45, 46, 47, 48, 50, 53, 55, 57, 60, 61, 66, 96, 98, 99, 101, 102, 103, 105, 108, 109, 111, 112, 113, 114], "11086": 0, "11087": 0, "11088": 0, "akeco": 0, "na": [0, 1, 30, 105], "2": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 111, 112, 113, 114], "7": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], "dev0": [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 111, 112, 113, 114], "univers": [1, 3, 5, 6, 7, 9, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 56, 60, 61, 62, 66, 68, 71, 77, 80, 81, 82, 88, 89, 93, 94, 95, 96, 98, 99, 103, 105, 106, 108, 110, 111, 112], "contain": [1, 3, 4, 7, 8, 12, 14, 15, 17, 26, 30, 34, 37, 39, 40, 41, 42, 44, 46, 48, 50, 53, 55, 57, 66, 72, 81, 84, 87, 88, 89, 91, 92, 93, 96, 98, 101, 102, 103, 104, 105, 106, 108, 109, 111, 112, 114], "all": [1, 2, 3, 4, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 26, 30, 33, 34, 37, 38, 44, 46, 48, 50, 53, 57, 66, 81, 83, 92, 95, 98, 99, 100, 101, 102, 103, 105, 106, 108, 109, 112, 114], "particl": [1, 9, 13, 14, 34, 36, 40, 50, 52, 53, 72, 105], "molecular": [1, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 58, 59, 61, 66, 80, 85, 97, 99, 104, 114], "system": [1, 2, 3, 4, 14, 15, 22, 26, 30, 36, 40, 50, 53, 57, 61, 80, 81, 83, 105, 108, 114], "regardless": [1, 3, 53, 113], "whether": [1, 3, 9, 10, 14, 16, 34, 50, 114], "realli": [1, 13, 15, 108], "g": [1, 3, 4, 5, 7, 14, 15, 19, 20, 26, 30, 32, 33, 34, 37, 53, 57, 67, 80, 99, 100, 101, 102, 103, 104, 106, 107, 108, 109, 112, 113, 114], "mai": [1, 3, 4, 7, 9, 12, 14, 15, 16, 18, 19, 26, 27, 28, 30, 32, 33, 34, 36, 38, 42, 43, 44, 48, 50, 53, 57, 93, 100, 101, 102, 103, 105, 111], "unit": [1, 5, 26, 48, 49, 50, 52, 53, 63, 66, 67, 68, 76, 79, 81, 82, 88, 101, 103, 105, 106, 108, 112], "coars": [1, 9, 19, 20, 53, 104], "grain": [1, 9, 19, 20, 53, 104], "bead": [1, 9, 53], "": [1, 2, 3, 4, 9, 10, 13, 16, 19, 26, 27, 30, 33, 34, 37, 39, 40, 42, 44, 45, 48, 50, 52, 53, 55, 56, 57, 60, 67, 81, 87, 96, 98, 101, 102, 103, 104, 105, 109, 111, 113, 114], "master": [1, 3, 109, 114], "The": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 56, 57, 60, 61, 62, 66, 67, 68, 69, 70, 72, 73, 77, 78, 79, 80, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 113, 114], "probabl": [1, 7, 15, 38, 41, 42, 44, 53, 88], "import": [1, 3, 5, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 56, 57, 60, 78, 83, 87, 93, 96, 98, 102, 103, 105, 106, 109, 110, 111, 112, 114], "virtual": [1, 3, 4, 93, 98], "everyth": [1, 3, 48, 53, 98, 101, 102], "can": [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 78, 79, 80, 81, 83, 84, 89, 91, 92, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114], "through": [1, 2, 3, 7, 12, 14, 15, 32, 41, 49, 53, 57, 98, 103, 105, 106, 109, 111, 114], "instanc": [1, 36, 50, 53, 57, 78, 106, 114], "typic": [1, 3, 7, 8, 13, 14, 26, 50, 52, 53, 96, 98, 99, 108, 109, 111, 112, 114], "select_atom": [1, 9, 11, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 26, 31, 34, 36, 37, 40, 48, 50, 52, 53, 55, 96, 98, 103, 105, 106, 110, 111, 112, 114], "manipul": [1, 53, 80, 99], "test": [1, 2, 5, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 70, 93, 96, 98, 102, 103, 106, 109, 110, 111, 112, 114], "datafil": [1, 5, 9, 10, 11, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 93, 96, 98, 101, 103, 106, 108, 109, 110, 111, 112, 114], "pdb": [1, 9, 10, 13, 14, 22, 23, 24, 34, 37, 46, 50, 52, 53, 57, 58, 59, 61, 77, 78, 83, 96, 97, 98, 103, 105, 108, 109, 114], "3": [1, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 60, 78, 81, 82, 83, 84, 87, 93, 94, 95, 96, 98, 103, 104, 106, 108, 109, 110, 111, 112, 113, 114], "4": [1, 3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 60, 78, 82, 83, 87, 88, 93, 96, 98, 100, 102, 103, 104, 106, 108, 109, 110, 111, 112, 114], "resnam": [1, 18, 19, 21, 26, 27, 28, 36, 37, 40, 48, 50, 53, 55, 61, 65, 72, 81, 82, 86, 87, 96, 97, 98, 105, 106, 109, 112], "arg": [1, 15, 18, 19, 21, 27, 28, 53, 83, 98, 106, 107, 109], "out": [1, 3, 4, 9, 10, 11, 12, 14, 19, 30, 34, 39, 48, 50, 52, 55, 57, 61, 70, 78, 93, 98, 102, 103, 105, 106, 109, 110, 111, 113, 114], "312": [1, 98, 104, 108], "see": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 18, 19, 20, 21, 22, 26, 27, 28, 30, 32, 33, 34, 37, 38, 40, 42, 43, 44, 46, 48, 50, 52, 53, 55, 56, 57, 60, 61, 63, 66, 67, 69, 76, 81, 84, 87, 94, 96, 98, 99, 100, 101, 102, 103, 105, 106, 108, 109, 112, 114], "more": [1, 2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 26, 27, 30, 33, 34, 38, 39, 40, 42, 43, 44, 46, 48, 49, 50, 53, 56, 57, 60, 61, 65, 69, 87, 98, 101, 103, 105, 106, 108, 109, 112, 114], "inform": [1, 3, 4, 7, 10, 12, 14, 15, 16, 19, 22, 26, 28, 30, 32, 33, 34, 37, 40, 42, 43, 44, 46, 50, 52, 56, 57, 60, 62, 63, 66, 69, 70, 71, 72, 80, 81, 82, 84, 87, 88, 94, 95, 98, 101, 103, 105, 106, 108, 111, 112, 114], "like": [1, 3, 4, 5, 13, 16, 19, 26, 30, 34, 39, 40, 43, 48, 53, 55, 57, 60, 83, 100, 106, 108], "list": [1, 2, 3, 5, 13, 15, 16, 19, 26, 30, 38, 39, 40, 42, 43, 44, 46, 48, 50, 53, 57, 61, 65, 67, 82, 87, 96, 99, 100, 102, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114], "5": [1, 3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 67, 71, 78, 82, 87, 93, 98, 102, 103, 104, 106, 108, 109, 110, 111, 112, 114], "print": [1, 5, 9, 10, 11, 13, 14, 15, 19, 23, 26, 27, 28, 30, 31, 34, 36, 37, 39, 40, 42, 43, 44, 45, 46, 49, 50, 53, 57, 101, 103, 108, 109, 110, 111, 114], "n": [1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 83, 95, 96, 98, 104, 105, 106, 107, 113], "type": [1, 3, 26, 42, 50, 52, 53, 58, 61, 65, 66, 72, 80, 81, 82, 83, 84, 85, 86, 87, 91, 92, 96, 97, 98, 104, 105, 106, 109, 113], "met": [1, 53, 83, 107, 109], "resid": [1, 13, 14, 23, 24, 26, 27, 36, 40, 46, 50, 53, 61, 65, 66, 69, 72, 75, 81, 82, 87, 89, 98, 105, 106, 109], "altloc": [1, 14, 61, 81, 82, 97, 106, 109], "return": [1, 3, 4, 9, 10, 13, 15, 16, 18, 19, 20, 21, 22, 24, 27, 30, 33, 34, 37, 40, 42, 44, 50, 53, 57, 98, 102, 105, 106, 108, 110, 111, 112], "below": [1, 2, 3, 5, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 26, 27, 28, 30, 33, 34, 36, 37, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 61, 98, 103, 106, 107, 108, 109, 112, 113, 114], "code": [1, 2, 4, 5, 6, 7, 11, 13, 14, 15, 16, 30, 36, 48, 50, 57, 67, 78, 81, 82, 84, 93, 98, 99, 102, 103, 104, 105, 106, 108, 109, 112, 114], "everi": [1, 3, 4, 10, 14, 15, 16, 24, 27, 30, 31, 34, 37, 39, 42, 44, 48, 50, 52, 53, 57, 60, 61, 98, 103, 105, 106, 108, 109, 111, 114], "second": [1, 10, 12, 18, 19, 21, 40, 44, 53, 113], "element": [1, 42, 50, 53, 60, 61, 65, 66, 70, 81, 82, 86, 97, 105, 109, 114], "first": [1, 3, 4, 7, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 26, 27, 30, 31, 32, 33, 34, 36, 37, 38, 40, 42, 44, 45, 46, 48, 49, 50, 53, 55, 57, 61, 69, 72, 81, 83, 89, 94, 98, 100, 101, 105, 106, 108, 110, 111, 114], "6th": [1, 106], "correspond": [1, 3, 12, 13, 14, 16, 24, 26, 27, 40, 55, 71, 98, 108, 109], "indic": [1, 3, 12, 13, 14, 19, 24, 26, 27, 30, 33, 34, 38, 40, 43, 50, 53, 81, 82, 84, 87, 91, 96, 101, 105, 106, 108, 109, 110], "6": [1, 3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 66, 69, 78, 81, 82, 83, 84, 87, 91, 93, 98, 102, 103, 104, 106, 109, 110, 111, 112, 114], "ag": [1, 10, 13, 40, 96, 98, 103], "also": [1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 26, 27, 28, 30, 32, 34, 37, 39, 40, 41, 42, 44, 48, 53, 55, 57, 61, 62, 81, 82, 87, 89, 98, 100, 101, 102, 103, 105, 106, 108, 109, 110, 111, 112, 113, 114], "support": [1, 3, 13, 19, 30, 46, 53, 66, 71, 72, 82, 84, 85, 88, 100, 103, 105, 106, 109, 111, 114], "fanci": [1, 53, 110], "pass": [1, 3, 4, 13, 16, 18, 19, 22, 23, 24, 26, 28, 30, 31, 34, 36, 37, 39, 42, 43, 44, 45, 49, 50, 53, 55, 60, 61, 62, 66, 80, 81, 93, 95, 96, 100, 102, 103, 105, 106, 108, 110, 112, 114], "ndarrai": [1, 53, 110], "8": [1, 4, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 22, 23, 24, 26, 27, 28, 30, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 46, 48, 49, 50, 52, 53, 55, 57, 78, 81, 82, 87, 98, 103, 105, 106, 109, 110, 111, 112, 114], "10": [1, 3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 71, 78, 82, 83, 87, 98, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114], "9": [1, 3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 24, 26, 27, 28, 30, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 78, 81, 82, 84, 87, 98, 102, 103, 105, 106, 108, 109, 110, 111, 112, 114], "47680": 1, "boolean": [1, 53, 108, 110], "allow": [1, 2, 3, 10, 13, 14, 19, 27, 28, 30, 36, 37, 40, 42, 43, 44, 52, 53, 56, 57, 60, 96, 99, 100, 103, 105, 106, 108, 110, 114], "you": [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 26, 27, 30, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 60, 61, 62, 64, 67, 78, 79, 80, 89, 96, 98, 99, 100, 101, 102, 103, 104, 106, 108, 109, 110, 111, 112, 114], "true": [1, 3, 9, 10, 11, 12, 13, 14, 16, 26, 27, 28, 30, 34, 37, 38, 40, 42, 44, 45, 46, 48, 50, 52, 53, 55, 66, 68, 89, 94, 103, 105, 106, 108, 110, 114], "fals": [1, 4, 9, 11, 14, 19, 20, 26, 27, 30, 40, 44, 46, 48, 50, 53, 57, 78, 103, 105, 106, 108, 109, 110, 114], "valu": [1, 3, 7, 8, 11, 12, 13, 14, 15, 19, 24, 26, 27, 30, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 53, 57, 60, 65, 66, 67, 76, 81, 82, 83, 89, 92, 105, 106, 108, 110, 114], "must": [1, 2, 3, 4, 11, 12, 13, 16, 18, 22, 23, 26, 27, 30, 31, 34, 42, 43, 46, 48, 50, 53, 60, 66, 79, 83, 84, 100, 101, 108, 109, 112, 114], "same": [1, 3, 4, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 24, 26, 28, 30, 31, 33, 34, 36, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 53, 55, 60, 67, 93, 95, 96, 98, 102, 103, 105, 106, 109, 110, 114], "length": [1, 3, 6, 7, 12, 13, 22, 24, 27, 29, 39, 40, 42, 44, 45, 46, 48, 50, 52, 53, 63, 66, 67, 68, 71, 79, 88, 99, 104, 105, 110, 111], "origin": [1, 3, 4, 7, 9, 13, 14, 23, 27, 32, 33, 34, 39, 50, 53, 55, 57, 67, 98, 102, 106, 108, 110, 113], "condit": [1, 15, 105, 106, 108, 110, 112], "arr": 1, "11": [1, 3, 9, 10, 13, 14, 15, 16, 19, 24, 26, 27, 28, 30, 33, 34, 36, 37, 38, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 78, 81, 82, 83, 87, 98, 103, 104, 105, 106, 109, 110, 112, 113, 114], "len": [1, 12, 23, 24, 30, 33, 34, 36, 37, 38, 40, 42, 44, 45, 46, 48, 50, 53, 57, 98, 103, 108, 109, 111], "12": [1, 3, 9, 10, 13, 14, 15, 16, 19, 26, 27, 30, 33, 34, 36, 37, 40, 42, 43, 44, 46, 48, 49, 50, 52, 53, 55, 57, 78, 82, 86, 98, 103, 104, 106, 109, 110, 111, 112, 113, 114], "13": [1, 9, 10, 13, 14, 15, 16, 19, 26, 27, 30, 34, 36, 37, 40, 42, 43, 44, 48, 49, 50, 52, 53, 55, 57, 81, 82, 98, 103, 106, 109, 110, 112, 114], "number": [1, 3, 4, 6, 7, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 27, 30, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 52, 53, 57, 60, 65, 69, 71, 72, 75, 81, 82, 83, 84, 85, 87, 89, 91, 92, 93, 96, 103, 105, 106, 108, 109, 114], "wai": [1, 3, 4, 7, 10, 12, 13, 14, 15, 16, 18, 19, 26, 27, 30, 33, 34, 48, 52, 53, 79, 98, 99, 103, 105, 106, 108, 109, 111, 114], "compar": [1, 6, 7, 9, 10, 11, 12, 14, 15, 17, 19, 22, 32, 34, 40, 41, 42, 44, 45, 108], "one": [1, 2, 3, 4, 10, 11, 12, 13, 15, 19, 27, 28, 30, 31, 39, 46, 50, 53, 56, 57, 83, 87, 88, 91, 92, 96, 98, 99, 100, 103, 104, 105, 106, 108, 109, 114], "concaten": [1, 15, 53, 103, 106, 114], "subtract": [1, 13, 84], "union": [1, 106], "differ": [1, 3, 4, 7, 9, 10, 12, 13, 15, 16, 19, 26, 28, 34, 36, 38, 40, 41, 45, 46, 48, 50, 53, 55, 60, 66, 67, 70, 71, 75, 82, 87, 91, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 106, 112, 114], "achiev": [1, 15], "similar": [1, 3, 4, 6, 12, 15, 19, 23, 24, 30, 32, 33, 34, 37, 38, 53, 73, 82, 83, 87, 92, 93, 98, 104], "outcom": [1, 105], "kei": [1, 2, 30, 38, 39, 49, 53, 57, 98, 99, 114], "preserv": [1, 4, 19, 66, 105], "ani": [1, 2, 3, 4, 11, 15, 16, 18, 27, 28, 30, 31, 37, 42, 43, 44, 46, 49, 50, 53, 56, 57, 61, 67, 89, 98, 99, 100, 101, 102, 103, 104, 105, 106, 108, 112], "duplic": [1, 30, 53, 103, 106], "where": [1, 4, 5, 7, 9, 14, 15, 16, 19, 20, 21, 22, 27, 31, 32, 33, 36, 37, 38, 40, 43, 44, 46, 48, 50, 53, 57, 60, 61, 66, 71, 89, 98, 100, 102, 105, 106, 108, 109], "its": [1, 2, 3, 4, 7, 9, 13, 15, 18, 19, 20, 22, 30, 32, 33, 44, 46, 49, 52, 53, 98, 99, 100, 101, 103, 106, 108, 109, 111, 112], "topologi": [1, 5, 14, 15, 26, 28, 52, 53, 59, 63, 65, 66, 69, 70, 71, 72, 73, 76, 77, 78, 80, 81, 82, 83, 84, 91, 92, 93, 95, 98, 99, 103, 105, 106, 108, 111], "14": [1, 9, 10, 13, 15, 16, 19, 26, 27, 30, 34, 36, 40, 42, 43, 44, 48, 49, 50, 52, 53, 55, 57, 82, 98, 100, 103, 104, 105, 106, 109, 110, 112, 114], "ag1": [1, 40], "15": [1, 7, 10, 13, 15, 16, 19, 26, 27, 30, 34, 36, 40, 41, 42, 43, 44, 45, 48, 49, 50, 52, 53, 57, 81, 82, 98, 103, 104, 106, 109, 110, 112, 114], "ag2": [1, 40], "16": [1, 3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 57, 81, 82, 98, 103, 104, 105, 106, 109, 110, 111, 112], "concat": 1, "17": [1, 12, 15, 16, 19, 20, 21, 26, 27, 30, 33, 34, 36, 39, 42, 44, 48, 49, 50, 52, 53, 57, 69, 81, 82, 87, 98, 103, 104, 106, 109, 110, 111, 112], "18": [1, 9, 15, 16, 19, 26, 27, 30, 42, 44, 46, 48, 49, 50, 52, 53, 57, 78, 81, 82, 86, 98, 103, 105, 106, 109, 110, 112, 113], "19": [1, 15, 16, 19, 22, 23, 24, 26, 27, 28, 30, 37, 40, 42, 44, 48, 49, 50, 52, 53, 57, 82, 98, 103, 104, 105, 106, 109, 112, 113], "avail": [1, 2, 3, 7, 15, 16, 19, 32, 33, 36, 40, 42, 43, 44, 53, 56, 57, 60, 66, 73, 77, 79, 82, 87, 96, 98, 99, 100, 102, 105, 106, 108, 109, 114], "keep": [1, 2, 3, 10, 14, 30, 34, 39, 43, 44, 48, 55, 72, 96, 99, 101, 102, 108], "well": [1, 2, 4, 7, 15, 32, 33, 44, 48, 61, 67, 99, 101, 105, 108], "equival": [1, 27, 48, 87], "result": [1, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 24, 30, 31, 36, 37, 38, 39, 40, 42, 43, 44, 48, 49, 52, 53, 61, 89, 94, 105, 106, 108, 110], "t": [1, 3, 4, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 24, 26, 27, 28, 30, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 52, 53, 55, 56, 57, 66, 82, 92, 96, 98, 100, 103, 104, 105, 106, 107, 108, 110, 111, 112, 114], "sort": [1, 26, 27, 30, 34, 53, 105, 106], "isdisjoint": 1, "do": [1, 3, 4, 6, 10, 11, 12, 13, 15, 16, 19, 22, 26, 27, 28, 30, 34, 37, 42, 44, 45, 46, 48, 50, 52, 53, 95, 99, 101, 102, 103, 105, 108, 114], "share": [1, 3, 105], "issubset": 1, "part": [1, 2, 3, 4, 15, 30, 48, 57, 101, 103, 105, 106, 108, 111], "is_strict_subset": 1, "issuperset": 1, "is_strict_superset": 1, "both": [1, 3, 4, 13, 15, 16, 22, 30, 38, 48, 50, 52, 53, 60, 63, 72, 81, 85, 87, 91, 98, 100, 102, 103, 105, 108, 109, 114], "intersect": [1, 106], "common": [1, 3, 7, 12, 13, 14, 15, 22, 26, 31, 32, 34, 53, 55, 68, 70, 104, 106, 108], "symmetric_differ": 1, "separ": [1, 5, 7, 15, 16, 19, 30, 31, 36, 40, 42, 43, 81, 83, 84, 100, 102, 106, 108, 114], "properti": [1, 16, 30, 39, 53, 60, 98, 105, 106, 109, 111, 112], "level": [1, 3, 4, 15, 48, 85, 98, 101, 108, 114], "connect": [1, 3, 4, 33, 50, 52, 53, 60, 61, 82, 87, 91, 105, 114], "residu": [1, 3, 7, 13, 14, 17, 19, 21, 22, 26, 28, 30, 36, 37, 38, 39, 40, 48, 49, 50, 52, 53, 55, 61, 65, 69, 70, 71, 72, 75, 81, 82, 83, 86, 87, 92, 93, 95, 96, 99, 105, 106, 109, 112, 114], "molecul": [1, 4, 10, 13, 26, 31, 38, 50, 55, 58, 61, 66, 78, 87, 92, 95, 98, 105, 106, 108, 109, 112], "segment": [1, 10, 49, 53, 61, 65, 70, 81, 87, 95, 99, 103, 105, 106, 109, 114], "20": [1, 15, 16, 19, 26, 30, 31, 42, 44, 48, 49, 50, 52, 53, 57, 82, 98, 103, 105, 106, 110, 111, 112, 113], "21": [1, 3, 9, 15, 16, 26, 27, 28, 30, 31, 33, 42, 44, 48, 49, 50, 52, 53, 57, 71, 81, 82, 98, 103, 104, 105, 106, 109, 112, 113, 114], "24": [1, 15, 16, 26, 27, 30, 34, 39, 44, 49, 50, 53, 57, 81, 82, 87, 98, 99, 103, 105, 112], "accord": [1, 13, 14, 87, 91, 106, 109], "produc": [1, 23, 27, 34, 53, 57, 67, 105, 108], "dictionari": [1, 18, 30, 57, 60, 89, 105, 108, 114], "22": [1, 15, 16, 26, 30, 44, 46, 48, 49, 50, 53, 57, 81, 82, 98, 103, 105, 106, 112], "mass": [1, 6, 7, 9, 10, 15, 16, 23, 24, 28, 30, 36, 40, 45, 46, 47, 48, 53, 55, 61, 63, 65, 66, 86, 87, 92, 97, 106, 109, 112, 113, 114], "32": [1, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 50, 52, 53, 55, 57, 98, 104, 105], "06": [1, 38, 104, 113], "008": [1, 53], "23853": 1, "11084": 1, "011": [1, 39, 53], "1040": [1, 98], "007": [1, 53, 82], "289": 1, "999": [1, 53, 65, 93], "11404": 1, "98977": 1, "multipl": [1, 3, 27, 39, 48, 53, 57, 62, 89, 94, 98, 100, 105, 106, 112, 114], "them": [1, 3, 4, 7, 9, 10, 13, 15, 18, 19, 22, 34, 38, 39, 42, 43, 44, 45, 46, 50, 52, 53, 55, 60, 61, 66, 68, 79, 81, 82, 89, 95, 101, 102, 103, 104, 105, 106, 108, 109, 112], "23": [1, 15, 16, 26, 30, 34, 44, 48, 49, 50, 53, 57, 81, 82, 87, 93, 98, 103, 106, 112], "sol": [1, 30, 36, 37, 40, 48, 50, 55, 87, 112], "22168": 1, "iter": [1, 12, 14, 15, 16, 30, 44, 49, 53, 103, 105, 108, 109, 110, 111], "atom1": [1, 95], "25": [1, 15, 26, 27, 30, 34, 46, 49, 50, 53, 57, 81, 82, 83, 98, 103, 105], "atom2": [1, 95], "26": [1, 15, 26, 30, 34, 49, 50, 53, 57, 81, 82, 83, 87, 93, 98, 103], "atom3": 1, "27": [1, 15, 26, 30, 49, 50, 53, 57, 81, 82, 93, 98, 103, 104, 107, 113], "28": [1, 3, 15, 30, 49, 50, 53, 57, 78, 98, 103], "ca": [1, 9, 10, 11, 12, 13, 14, 16, 18, 20, 21, 23, 24, 36, 37, 38, 39, 40, 42, 43, 44, 46, 53, 60, 98, 103, 106, 107], "c": [1, 3, 13, 27, 30, 31, 34, 36, 37, 38, 39, 46, 48, 50, 52, 53, 62, 67, 78, 81, 82, 85, 87, 88, 98, 100, 102, 103, 104, 105, 106, 107, 113], "cb": [1, 36, 53, 98], "h2": [1, 26, 28, 50, 78], "h": [1, 3, 27, 31, 36, 39, 45, 50, 52, 53, 78, 87, 96, 98, 103, 106], "neat": [1, 4], "shortcut": [1, 106], "simpli": [1, 3, 12, 13, 15, 21, 24, 26, 34, 40, 50, 52, 53, 60, 79, 84, 88, 101, 104, 105, 106, 109, 113], "29": [1, 13, 15, 30, 34, 46, 49, 50, 53, 57, 98, 103, 113], "30": [1, 13, 14, 15, 22, 23, 30, 33, 42, 49, 50, 53, 57, 78, 98, 103, 104, 110, 112, 113], "31": [1, 15, 16, 19, 30, 48, 49, 50, 53, 57, 81, 82, 98, 103], "altern": [1, 3, 13, 20, 30, 48, 57, 77, 81, 82, 96, 103, 106, 108, 109, 112], "provid": [1, 3, 4, 7, 12, 13, 15, 16, 17, 25, 26, 30, 31, 34, 37, 38, 43, 44, 46, 52, 53, 55, 57, 60, 61, 62, 65, 71, 81, 82, 83, 88, 94, 96, 99, 100, 103, 105, 106, 108, 109, 114], "belong": [1, 28, 50, 53, 61, 98, 106, 107], "33": [1, 15, 49, 50, 53, 57, 81, 82], "34": [1, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 30, 33, 37, 38, 39, 40, 42, 43, 44, 45, 49, 50, 52, 53, 55, 57, 81, 82, 98, 104], "These": [1, 3, 4, 5, 7, 8, 17, 24, 37, 43, 48, 53, 57, 72, 81, 82, 89, 94, 98, 106, 108, 109], "user": [1, 2, 3, 6, 7, 15, 19, 26, 28, 39, 42, 43, 44, 45, 49, 53, 60, 61, 66, 68, 69, 72, 78, 79, 87, 88, 100, 101, 102, 103, 105, 106, 108, 109, 114], "work": [1, 2, 4, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 56, 57, 62, 67, 79, 96, 99, 100, 102, 104, 105, 106, 108, 111], "35": [1, 19, 20, 30, 49, 50, 53, 57, 98, 103, 104], "null": 1, "36": [1, 49, 50, 53, 57, 83], "abov": [1, 3, 10, 13, 16, 23, 24, 26, 27, 28, 39, 48, 53, 55, 57, 83, 102, 103, 105, 106, 108, 109, 111], "37": [1, 38, 49, 50, 53, 57, 83, 98, 104], "For": [1, 2, 3, 4, 7, 9, 12, 13, 15, 16, 19, 26, 28, 30, 32, 33, 34, 37, 39, 40, 42, 43, 44, 46, 50, 52, 53, 55, 57, 60, 61, 66, 78, 83, 87, 89, 96, 98, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 114], "38": [1, 16, 23, 49, 52, 53, 57, 81, 82], "does_not_exist": 1, "39": [1, 13, 15, 16, 18, 20, 21, 23, 24, 26, 30, 31, 36, 37, 38, 39, 40, 42, 43, 44, 48, 49, 50, 52, 53, 57, 81, 82], "40": [1, 19, 30, 49, 53, 57, 81, 82, 98, 103, 110], "have": [1, 2, 3, 4, 10, 11, 12, 13, 14, 15, 16, 18, 19, 22, 24, 26, 27, 30, 31, 33, 34, 36, 37, 40, 42, 44, 45, 46, 48, 50, 53, 55, 57, 60, 63, 66, 67, 69, 71, 75, 79, 81, 82, 84, 87, 89, 95, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 114], "evalu": [1, 6, 7, 34, 41, 49, 106], "context": [1, 15, 30, 52, 53, 96, 108], "41": [1, 30, 49, 57, 81, 82, 98], "bool": [1, 3, 18, 50, 109, 110], "skip": [1, 3, 16, 46, 57, 100], "over": [1, 6, 7, 8, 12, 15, 16, 17, 18, 20, 21, 22, 26, 27, 30, 32, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 53, 55, 72, 102, 103, 105, 108, 110, 111, 112], "instead": [1, 3, 4, 9, 10, 12, 14, 15, 16, 19, 23, 24, 30, 34, 37, 39, 43, 44, 48, 50, 55, 61, 81, 82, 88, 92, 93, 100, 105, 106, 108, 111, 114], "rais": [1, 3, 33, 49, 53, 65, 79, 81, 82, 83, 99, 100, 101, 105, 108], "error": [1, 3, 4, 9, 49, 53, 72, 79, 89, 94, 100, 101, 105, 108], "which": [1, 3, 4, 10, 12, 13, 14, 15, 16, 19, 20, 21, 26, 27, 28, 30, 31, 33, 34, 37, 38, 39, 40, 42, 43, 44, 46, 48, 50, 53, 55, 57, 60, 61, 67, 68, 83, 87, 89, 91, 94, 96, 98, 99, 100, 102, 103, 105, 106, 108, 109, 112, 114], "help": [1, 2, 3, 4, 13, 16, 22, 96, 99, 100, 106, 108], "occasion": [1, 89, 94], "aris": [1, 4], "logic": 1, "too": [1, 16, 42, 44, 48, 53, 55, 56, 99, 108], "restrict": [1, 13, 14, 87], "geometr": [1, 6, 7, 26, 41, 52], "normal": [1, 3, 15, 30, 38, 39, 43, 44, 84, 91, 96, 102, 104, 105, 108], "static": [1, 10, 15, 53, 106, 109, 111, 114], "within": [1, 6, 7, 16, 17, 18, 19, 20, 22, 26, 28, 30, 36, 38, 40, 42, 43, 44, 45, 50, 53, 57, 60, 67, 77, 105, 106, 111, 112], "chang": [1, 5, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 26, 27, 28, 30, 33, 34, 38, 39, 42, 43, 44, 45, 49, 53, 55, 57, 61, 71, 72, 81, 87, 89, 100, 102, 103, 106, 108, 111], "trajectori": [1, 5, 6, 8, 9, 17, 18, 20, 21, 26, 27, 32, 33, 36, 37, 38, 40, 42, 43, 44, 45, 48, 49, 50, 52, 54, 58, 59, 61, 66, 71, 72, 81, 82, 91, 93, 99, 104, 105, 106, 108, 112, 113, 114], "frame": [1, 7, 9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 26, 27, 30, 32, 33, 34, 36, 37, 38, 39, 40, 43, 44, 46, 48, 49, 52, 55, 56, 61, 66, 71, 81, 82, 89, 94, 99, 105, 106, 108, 110, 111, 112, 114], "sever": [1, 3, 7, 16, 29, 30, 33, 34, 53, 82, 101, 105, 108, 114], "requir": [1, 3, 4, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 65, 66, 79, 81, 82, 83, 95, 96, 98, 100, 103, 105, 106, 108, 109], "function": [1, 2, 3, 4, 6, 7, 8, 13, 17, 19, 20, 21, 27, 30, 33, 34, 35, 37, 41, 42, 43, 44, 45, 46, 52, 53, 55, 56, 57, 85, 87, 98, 100, 101, 102, 104, 105, 106, 109, 111, 112, 114], "implement": [1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 32, 33, 34, 39, 53, 57, 62, 66, 76, 82, 87, 95, 106, 112], "mani": [1, 2, 3, 4, 13, 15, 16, 21, 26, 30, 34, 39, 40, 42, 43, 44, 53, 99, 100, 108, 109, 111, 114], "interest": [1, 19, 30, 48, 53, 100], "bond": [1, 13, 31, 49, 52, 53, 55, 57, 61, 66, 78, 80, 81, 82, 84, 86, 91, 92, 97, 98, 99, 104, 105, 106, 109, 114], "angl": [1, 6, 7, 22, 26, 27, 28, 35, 39, 50, 53, 57, 61, 66, 67, 84, 86, 92, 97, 99, 104, 105, 106, 109, 113, 114], "dihedr": [1, 6, 7, 35, 53, 61, 66, 84, 86, 97, 105, 106, 109, 114], "improperdihedr": [1, 109], "present": [1, 3, 19, 21, 26, 27, 40, 52, 65, 68, 81, 92, 95, 98, 105], "residuegroup": [1, 53, 98, 105, 109], "free": [2, 3, 101], "open": [2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 53, 55, 87, 89, 94, 104, 108], "sourc": [2, 3, 4, 16, 30, 53, 57, 84, 96, 100, 102, 105, 108], "project": [2, 3, 4, 7, 32, 37, 39, 43, 44, 48, 99, 105], "It": [2, 3, 4, 7, 9, 12, 13, 14, 15, 16, 21, 22, 26, 27, 28, 30, 32, 33, 34, 36, 37, 40, 45, 48, 49, 50, 53, 57, 60, 61, 67, 76, 78, 82, 85, 87, 89, 99, 104, 106, 108, 110, 112, 114], "evolv": 2, "grow": [2, 5, 108], "demand": 2, "base": [2, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 19, 28, 33, 39, 42, 44, 46, 50, 52, 53, 60, 61, 65, 79, 87, 89, 94, 102, 103, 104, 105, 106, 107, 108, 109], "develop": [2, 15, 52, 72, 101, 108], "team": 2, "veri": [2, 3, 12, 13, 15, 19, 23, 24, 27, 44, 45, 48, 79, 93, 103, 108], "much": [2, 3, 10, 11, 12, 13, 14, 16, 19, 30, 34, 42, 43, 48, 50, 60, 105, 108], "welcom": 2, "take": [2, 3, 4, 7, 14, 15, 16, 17, 23, 26, 30, 33, 42, 44, 48, 93, 96, 99, 100, 103, 106, 108, 109, 112, 114], "form": [2, 13, 19, 26, 42, 53, 55, 60], "bug": [2, 3, 16, 88, 102], "report": [2, 52, 99, 108], "enhanc": [2, 3], "request": [2, 4, 101, 102, 108], "issu": [2, 3, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 33, 38, 39, 43, 44, 49, 50, 57, 61, 63, 67, 79, 84, 87, 89, 94, 99, 100, 101, 102, 106, 108], "tracker": [2, 87, 99, 108], "fix": [2, 3, 4, 48, 49, 68, 72, 102], "improv": [2, 27, 99, 108], "speed": [2, 105, 108], "clariti": [2, 26], "modernis": 2, "featur": [2, 3, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 83, 99, 100, 102, 114], "addit": [2, 3, 7, 44, 57, 61, 82, 96, 98, 101, 102, 103, 105, 106, 108, 109], "document": [2, 5, 7, 15, 19, 22, 26, 30, 43, 48, 53, 66, 76, 89, 94, 105, 106, 108, 113], "includ": [2, 3, 4, 7, 9, 10, 13, 14, 15, 16, 19, 34, 36, 37, 39, 43, 48, 50, 52, 53, 55, 57, 84, 85, 87, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 109, 111, 112, 114], "typo": [2, 3], "build": [2, 15, 16, 50, 53, 65, 87, 99, 100, 105], "question": [2, 3, 99], "discuss": [2, 3, 15, 27, 60, 63, 79, 87, 99, 101, 108], "mdnalysi": [2, 99, 108], "mail": [2, 99, 100, 101, 102, 108], "commun": [2, 3, 88], "subscrib": [2, 99], "conduct": [2, 99], "member": 2, "agre": [2, 99], "adher": [2, 102], "pleas": [2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 26, 27, 28, 30, 33, 34, 38, 39, 42, 43, 44, 45, 46, 53, 61, 87, 99, 100, 102, 104, 105, 112], "read": [2, 3, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 30, 33, 38, 39, 43, 44, 49, 50, 52, 60, 62, 63, 64, 74, 80, 90, 91, 92, 99, 105, 106, 109, 110, 111, 113, 114], "mdanalysistest": [2, 3, 9, 10, 11, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 55, 57, 100, 101, 102, 103, 105, 108], "packag": [2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 61, 79, 86, 96, 100, 101, 104, 105, 106, 108], "distribut": [2, 3, 6, 7, 15, 30, 35, 38, 41, 42, 44, 45, 70, 100, 102], "under": [2, 3, 15, 19, 53, 87, 101, 105, 108, 110], "gnu": [2, 108], "gener": [2, 3, 4, 7, 8, 9, 10, 14, 15, 18, 19, 20, 28, 30, 34, 37, 38, 39, 48, 50, 53, 55, 58, 59, 61, 67, 77, 80, 89, 94, 99, 102, 103, 104, 105, 113, 114], "public": [2, 3, 16, 30, 99, 102, 104, 108], "licens": [2, 15, 105, 108], "later": [2, 4, 13, 15, 102, 105, 106], "copyleft": 2, "deriv": [2, 3, 84, 87, 98, 105, 109], "made": [2, 3, 4, 26, 48, 71, 103, 105, 106, 109], "Be": [2, 15, 100], "sure": [2, 3, 4, 18, 100, 102, 106, 108], "comfort": 2, "befor": [2, 3, 4, 13, 16, 30, 36, 45, 48, 60, 89, 100, 101, 102, 105, 106, 108, 111], "push": [2, 4, 15, 102, 108], "page": [2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 61, 102, 104, 106, 108], "came": [2, 108], "panda": [2, 13, 15, 16, 18, 19, 20, 21, 26, 33, 34, 49, 53, 108], "guid": [2, 3, 6, 7, 11, 12, 13, 15, 16, 18, 20, 21, 28, 33, 37, 38, 40, 42, 43, 44, 45, 49, 69, 100, 108], "idea": [2, 3, 53, 102], "If": [2, 3, 4, 7, 9, 10, 11, 12, 13, 15, 16, 23, 26, 27, 30, 34, 36, 37, 38, 40, 42, 44, 46, 50, 52, 53, 55, 57, 61, 65, 66, 67, 68, 79, 81, 82, 83, 84, 88, 89, 92, 96, 99, 100, 101, 102, 103, 105, 106, 108, 109, 112, 114], "look": [2, 3, 4, 10, 12, 13, 15, 19, 23, 24, 26, 28, 36, 37, 39, 48, 55, 61, 83, 86, 92, 96, 98, 108, 111], "brand": 2, "we": [2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 68, 82, 88, 96, 98, 99, 100, 101, 102, 105, 108, 109], "recommend": [2, 3, 21, 26, 45, 61, 100, 101, 102, 108], "go": [2, 3, 4, 15, 16, 96, 102, 106], "main": [2, 4, 100], "codebas": [2, 16, 105], "your": [2, 4, 5, 6, 7, 10, 13, 15, 17, 19, 20, 21, 22, 26, 27, 30, 32, 34, 36, 37, 40, 42, 43, 44, 45, 46, 48, 49, 50, 53, 55, 60, 61, 67, 75, 84, 87, 99, 100, 103, 104, 105, 108, 111, 112], "own": [2, 3, 4, 6, 7, 13, 15, 17, 19, 20, 21, 30, 42, 52, 53, 66, 99, 101, 108, 112], "encourag": [2, 108], "an": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 19, 20, 21, 22, 23, 24, 26, 31, 33, 34, 37, 38, 39, 40, 42, 43, 44, 46, 48, 49, 50, 52, 53, 57, 60, 62, 66, 67, 69, 71, 72, 78, 80, 83, 84, 85, 87, 88, 89, 94, 96, 98, 99, 100, 101, 102, 104, 105, 106, 108, 110, 112, 114], "toolkit": [2, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 52, 53, 55, 99, 104], "mdakit": [2, 105], "standalon": [2, 16, 108], "solv": [2, 87], "specif": [2, 3, 4, 7, 14, 16, 26, 27, 29, 30, 36, 53, 56, 60, 66, 73, 98, 100, 101, 103, 104, 105, 108, 110, 114], "scientif": [2, 3, 15, 85, 104, 105], "technic": [2, 3, 4, 88], "problem": [2, 3, 4, 13, 61, 68, 87, 99], "option": [2, 9, 10, 14, 16, 19, 22, 23, 24, 30, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 53, 55, 57, 61, 66, 67, 82, 83, 95, 100, 103, 104, 105, 108, 109, 114], "regist": [2, 44], "registri": 2, "advertis": [2, 105], "broader": 2, "continu": [2, 3, 19, 27, 48, 89, 94, 102, 103, 105, 109, 114], "against": [2, 4, 102, 105], "latest": [2, 3, 15, 100, 108], "make": [2, 3, 4, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 24, 26, 28, 33, 34, 38, 39, 40, 42, 43, 44, 45, 49, 53, 55, 56, 98, 100, 102, 103, 106, 108, 109, 111, 112, 114], "peopl": [2, 3, 102], "togeth": [2, 53, 99, 103, 112], "daunt": 2, "aspect": 2, "stick": [2, 50], "guidelin": [2, 105], "process": [2, 3, 7, 15, 17, 18, 19, 23, 24, 26, 27, 48, 67, 102, 105, 108, 114], "straightforward": [2, 53, 103, 106], "mostli": [2, 15], "troubl": [2, 40], "As": [2, 3, 4, 10, 12, 13, 14, 15, 16, 23, 24, 30, 33, 34, 39, 42, 43, 44, 48, 50, 53, 55, 57, 61, 84, 93, 95, 96, 98, 100, 102, 103, 105, 106, 108, 109, 113], "alwai": [2, 3, 4, 10, 15, 16, 20, 26, 33, 34, 53, 57, 60, 61, 67, 79, 81, 83, 84, 87, 88, 96, 99, 101, 103, 106, 108, 109, 111, 113], "difficulti": [2, 99], "feel": [2, 3], "ask": [2, 3, 16, 99, 100, 102, 108], "host": [2, 3, 5], "need": [2, 3, 7, 8, 9, 14, 15, 16, 19, 24, 30, 33, 34, 42, 43, 44, 46, 48, 50, 52, 53, 55, 67, 98, 99, 100, 101, 102, 103, 105, 108, 111, 112], "sign": [2, 34], "up": [2, 3, 4, 12, 15, 16, 27, 31, 42, 44, 46, 52, 53, 57, 66, 93, 96, 99, 100, 103, 105, 106, 108, 112], "account": [2, 3, 4, 7, 32, 34, 40, 49], "great": 2, "resourc": [2, 3, 15, 42, 44, 55, 99, 108], "learn": [2, 3, 7, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 33, 38, 39, 42, 43, 44, 49, 99], "numpi": [2, 3, 10, 12, 15, 16, 18, 19, 20, 21, 23, 24, 26, 27, 28, 30, 33, 34, 37, 40, 42, 43, 44, 45, 46, 48, 49, 50, 53, 55, 100, 101, 102, 103, 105, 108, 109, 112], "matthew": [2, 52], "brett": 2, "pydagogu": 2, "instruct": [2, 53, 100], "instal": [2, 3, 4, 5, 7, 10, 30, 33, 34, 42, 43, 44, 46, 48, 53, 55, 79, 101, 104, 105, 108], "set": [2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 19, 23, 26, 27, 30, 31, 34, 37, 46, 48, 50, 52, 53, 57, 61, 66, 67, 68, 81, 83, 87, 88, 89, 92, 96, 101, 102, 103, 104, 105, 106, 108, 109, 111, 114], "ssh": 2, "configur": [2, 7, 19, 23, 32, 41, 67, 108], "step": [2, 3, 10, 13, 14, 15, 16, 26, 34, 37, 39, 44, 48, 52, 53, 55, 57, 68, 72, 88, 105, 112, 114], "complet": [2, 3, 5, 30, 53, 57, 112], "seamlessli": [2, 67], "between": [2, 3, 4, 6, 7, 8, 9, 11, 14, 16, 17, 18, 19, 21, 24, 26, 27, 30, 32, 33, 34, 36, 38, 39, 40, 41, 46, 50, 53, 60, 80, 82, 83, 91, 99, 105, 108, 114], "local": [2, 3, 4, 7, 15, 16, 19, 20, 32, 33, 39, 48, 101, 102, 104, 108], "repositori": [2, 3, 4, 5, 99, 102], "would": [3, 13, 15, 16, 19, 39, 43, 100, 101, 105, 106, 109], "start": [3, 4, 6, 12, 13, 15, 16, 26, 30, 50, 57, 61, 69, 83, 87, 91, 101, 105, 106, 108], "search": [3, 30, 106], "someon": 3, "els": [3, 37, 83, 101], "don": [3, 10, 11, 18, 24, 26, 30, 40, 42, 53, 55, 100, 105, 111], "follow": [3, 4, 13, 16, 18, 23, 26, 27, 30, 34, 38, 46, 48, 53, 57, 60, 61, 63, 65, 67, 79, 81, 83, 87, 88, 91, 95, 100, 101, 102, 103, 105, 106, 108, 109, 114], "minor": [3, 102, 105], "ahead": [3, 102, 108], "major": [3, 53, 102], "That": [3, 19], "other": [3, 4, 6, 7, 9, 10, 11, 12, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 37, 38, 39, 42, 43, 44, 45, 46, 49, 53, 60, 61, 66, 67, 68, 69, 71, 72, 76, 78, 79, 80, 81, 86, 87, 95, 96, 98, 99, 100, 105, 106, 108, 109, 112, 113], "weigh": 3, "should": [3, 4, 5, 12, 13, 14, 15, 22, 26, 27, 30, 31, 34, 36, 42, 44, 53, 57, 68, 72, 77, 78, 83, 87, 92, 100, 101, 102, 105, 108, 109, 114], "link": [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 102, 104], "descript": [3, 5, 15, 30, 53, 57, 58, 61, 83, 87, 96, 97, 105, 108, 109], "here": [3, 4, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 60, 78, 100, 102, 105, 107, 109], "overview": [3, 4], "workflow": [3, 4, 48, 108], "inlin": [3, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 53], "expand": [3, 4, 44, 84], "throughout": [3, 4, 9, 10, 14, 19, 26, 27, 30, 34, 39, 48, 50, 53, 55, 98, 105], "rest": [3, 4, 14, 19, 26], "isol": [3, 4], "version": [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 67, 70, 71, 85, 99, 105, 109], "comput": [3, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 52, 53, 55, 56, 99, 100, 104, 108, 109, 113], "off": [3, 4, 12, 16, 46, 50, 89, 106, 108], "run": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 42, 44, 46, 48, 49, 52, 53, 55, 59, 61, 97, 100, 101, 102, 105, 110], "hit": [3, 4, 108], "button": [3, 4], "want": [3, 4, 7, 9, 10, 15, 16, 18, 19, 21, 22, 23, 26, 30, 31, 36, 42, 43, 44, 48, 50, 52, 55, 96, 100, 108, 111], "clone": [3, 100], "machin": [3, 4, 15, 48, 100, 105, 108], "git": [3, 4, 100, 102], "http": [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 100, 104, 105], "com": [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 100, 104, 105, 108], "cd": [3, 4, 100, 102, 104, 108], "remot": [3, 4], "upstream": [3, 4], "directori": [3, 4, 5, 30, 89, 101, 102, 104], "ll": [3, 4, 27], "highli": [3, 26, 61, 85, 100], "experiment": [3, 30], "interfer": [3, 100], "stabl": [3, 13, 14, 22, 100], "sinc": [3, 4, 15, 45, 57, 67, 87, 102, 106], "split": [3, 5, 26, 36, 89, 94, 98, 103, 105], "actual": [3, 4, 5, 16, 40, 52, 56, 108, 111, 112], "suit": [3, 53, 100, 114], "mode": [3, 33, 34, 38, 96, 104], "either": [3, 12, 13, 15, 19, 27, 30, 43, 45, 57, 62, 83, 103, 106, 109], "time": [3, 4, 12, 13, 14, 15, 16, 18, 19, 20, 26, 30, 33, 34, 36, 37, 38, 40, 52, 53, 55, 56, 57, 61, 63, 67, 68, 72, 78, 79, 88, 89, 94, 99, 102, 103, 105, 106, 108, 111, 112, 114], "contributor": [3, 108], "lot": [3, 66, 108], "experi": 3, "manag": [3, 15, 30, 53, 96, 100, 104, 108], "strongli": [3, 100, 108], "suggest": [3, 12, 16, 19], "choos": [3, 10, 13, 16, 19, 20, 26, 30, 34, 36, 42, 43, 48, 49, 53, 103], "anaconda": 3, "miniconda": [3, 4], "date": [3, 4, 102], "updat": [3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 72, 99, 100, 105, 106, 108, 110, 114], "without": [3, 4, 13, 15, 28, 30, 34, 37, 50, 53, 61, 87, 99, 103, 104, 105, 106, 108, 109, 114], "touch": [3, 61], "exist": [3, 15, 19, 37, 53, 60, 103, 108, 109], "dev": [3, 102], "activ": [3, 4, 82, 100], "when": [3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 22, 23, 24, 26, 27, 28, 30, 33, 34, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 57, 60, 61, 63, 66, 67, 79, 83, 87, 89, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 111, 113, 114], "info": [3, 27], "current": [3, 4, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 30, 33, 38, 39, 42, 43, 44, 45, 48, 49, 50, 53, 55, 57, 63, 67, 70, 72, 79, 81, 84, 87, 88, 89, 96, 100, 102, 103, 104, 106, 111, 112, 114], "finish": [3, 16], "deactiv": 3, "root": [3, 6, 7, 8, 9, 11, 15, 16, 38, 78, 82], "full": [3, 4, 26, 30, 44, 57, 66, 85, 89, 100, 102, 112], "detail": [3, 15, 30, 45, 53, 61, 80, 81, 98, 105, 108, 112], "purpos": [3, 19, 28], "leverag": [3, 15], "what": [3, 6, 30, 50, 53, 98, 101, 108, 109], "let": [3, 4, 16, 26, 27, 40, 102], "done": [3, 14, 16, 30, 109, 114], "m": [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 102, 104, 113], "my": [3, 4, 5, 18, 48], "env": [3, 4, 11, 12, 13, 15, 16, 18, 20, 21, 28, 33, 37, 38, 40, 42, 43, 44, 45, 49, 108], "folder": [3, 30, 108], "termin": [3, 5], "myproject": 3, "bin": [3, 9, 10, 11, 12, 13, 14, 26, 30, 33, 36, 40, 48, 49, 104, 105], "now": [3, 4, 11, 14, 16, 19, 27, 40, 43, 46, 48, 50, 52, 55, 81, 102, 105], "via": [3, 4, 26, 27, 28, 33, 43, 77, 98, 100, 102, 104, 105, 107], "affect": [3, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 27, 33, 38, 39, 43, 44, 49, 105], "global": [3, 7, 32, 33, 34, 101, 106], "session": [3, 5], "virtualenvwrapp": 3, "easier": [3, 4, 13, 26, 33, 34, 44, 55, 105], "organis": [3, 108], "singl": [3, 13, 15, 26, 27, 38, 46, 57, 61, 81, 105, 106, 108, 114], "so": [3, 5, 10, 11, 13, 14, 15, 16, 19, 22, 23, 24, 30, 34, 36, 37, 40, 42, 45, 48, 50, 55, 57, 60, 83, 87, 88, 92, 96, 102, 103, 105, 106, 108, 109, 114], "scatter": [3, 33, 34, 37, 44, 48], "command": [3, 4, 5, 48, 53, 66, 68, 76, 96, 100, 104, 108], "easi": [3, 12, 18, 104, 112], "creation": [3, 57, 78, 102, 105], "delet": [3, 102], "copi": [3, 4, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 38, 39, 42, 43, 44, 45, 49, 50, 57, 102, 105, 108], "tab": [3, 83], "outsid": [3, 31, 49, 55, 57, 98, 101, 105], "Then": [3, 4, 12, 13, 15, 18, 24, 53], "load": [3, 4, 30, 50, 61, 78, 89, 99, 103, 105, 109, 111, 112], "bashrc": [3, 5], "execut": [3, 4, 15, 30, 48, 108, 112], "decid": 3, "store": [3, 5, 12, 30, 34, 39, 48, 53, 57, 69, 85, 88, 89, 94, 105, 113], "export": [3, 4, 5, 48, 53, 104, 106], "workon_hom": 3, "mkdir": 3, "p": [3, 14, 16, 26, 27, 30, 33, 34, 38, 46, 48, 52, 53, 57, 61, 63, 67, 79, 81, 88, 95, 104, 105, 106, 107, 113, 114], "usr": 3, "sh": 3, "mkvirtualenv": 3, "our": [3, 10, 11, 12, 14, 16, 18, 22, 24, 27, 31, 44, 46, 48, 50, 52, 53, 55, 105, 108], "workon": 3, "exit": [3, 30], "especi": [3, 4, 27, 67, 100, 102], "interpret": [3, 7, 24, 32, 33, 34, 42, 53, 67, 105], "flag": [3, 4, 84, 86, 103, 105, 108], "hitchhik": 3, "good": [3, 4, 102], "tutori": [3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 19, 30, 32, 34, 39, 40, 48, 50, 53, 55, 100, 112, 114], "give": [3, 4, 7, 16, 17, 19, 21, 23, 24, 31, 37, 40, 44, 49, 53, 67, 98, 100, 108, 110, 112, 114], "depth": [3, 34], "explan": [3, 4, 9, 11, 30, 53], "One": [3, 4, 13, 14, 18, 30, 48, 52, 57, 103, 109], "often": [3, 4, 7, 12, 13, 19, 32, 48, 50, 52, 53, 61, 68, 80, 88, 100, 103, 106, 108, 112], "maco": [3, 105], "becaus": [3, 10, 13, 15, 16, 48, 50, 53, 56, 66, 68, 79, 101, 108, 111], "default": [3, 5, 7, 9, 12, 13, 19, 22, 24, 27, 30, 33, 34, 36, 38, 39, 40, 46, 48, 49, 50, 53, 57, 61, 65, 66, 67, 68, 76, 79, 81, 82, 88, 94, 95, 96, 105, 106, 108, 111, 113, 114], "simultan": [3, 19, 85], "quit": [3, 15, 34, 44, 96, 100, 114], "low": [3, 7, 12, 14, 32, 42], "256": 3, "increas": [3, 27, 33, 42, 43, 44, 85, 102, 105, 108], "ulimit": 3, "4096": 3, "appli": [3, 13, 16, 19, 30, 33, 36, 38, 42, 43, 44, 98, 104, 105, 106, 109, 111, 112], "high": [3, 4, 7, 14, 15, 32, 34, 42, 45, 52, 85, 106], "limit": [3, 15, 16, 30, 34, 36, 40, 55, 57, 88], "profil": 3, "mix": [3, 46, 103], "forg": [3, 100], "biopython": [3, 101, 105], "80": [3, 16, 19, 81, 82, 105, 106, 110], "networkx": [3, 105], "griddataformat": [3, 101], "mmtf": [3, 58, 59, 61, 97, 101, 106, 109], "joblib": [3, 15, 26], "scipi": [3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 79, 101, 104, 105], "matplotlib": [3, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 53, 57, 101], "tqdm": [3, 27, 105], "43": [3, 49, 57, 103], "threadpoolctl": 3, "fasten": [3, 105], "netcdf4": [3, 79, 108], "h5py": 3, "chemfil": [3, 58, 59, 61], "pyedr": 3, "pytng": [3, 105], "gsd": [3, 58, 59, 61, 97, 105, 109], "rdkit": [3, 58, 61, 78, 105], "2020": [3, 104, 105], "03": [3, 36, 37, 42, 104, 107, 109], "parm": [3, 51, 58, 59, 61, 86, 105], "seaborn": [3, 12, 18, 19, 33, 34, 46], "scikit": [3, 7, 42, 43, 44], "tidynam": 3, "xdrlib": 3, "sphinx": [3, 4], "theme": 3, "docutil": 3, "sitemap": 3, "sphinxcontrib": 3, "bibtex": [3, 53, 104], "pybtex": 3, "compil": [3, 4, 79, 105], "gcc": [3, 100], "clang": 3, "testsuit": [3, 5, 100, 102, 108], "At": [3, 102, 106, 108, 112], "point": [3, 4, 7, 13, 15, 30, 31, 32, 33, 37, 42, 44, 46, 48, 53, 55, 57, 102, 105, 106, 108, 110, 111], "abl": [3, 4, 30, 101, 102, 105, 108], "built": [3, 4, 30, 87, 108], "visibl": [3, 14, 19], "end": [3, 15, 45, 81, 108, 111], "__version__": [3, 50, 53, 102], "clustalw": 3, "next": [3, 13, 19, 26, 44, 46, 53, 55, 58, 59, 61, 89, 105, 106, 111], "releas": [3, 84, 87, 100, 108], "integr": [3, 7, 15, 32, 33, 52, 85, 105], "snapshot": [3, 102], "taken": [3, 27, 40, 42, 83, 95, 106, 108], "upload": 3, "pypi": [3, 102, 105], "approv": [3, 102], "shini": 3, "checkout": [3, 4], "b": [3, 4, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 61, 67, 81, 82, 87, 88, 98, 104, 106, 108, 109], "clear": [3, 4, 5, 9], "bring": 3, "switch": [3, 9, 19, 79, 102], "There": [3, 12, 19, 26, 30, 33, 34, 36, 37, 40, 50, 81, 82, 99, 112, 114], "special": [3, 4, 53, 108], "gh": [3, 4, 102], "prepar": [3, 16], "product": [3, 14, 34, 104], "handl": [3, 15, 79, 112], "old": [3, 15, 53, 67, 96, 103, 108], "kept": [3, 34, 79], "protect": [3, 102], "histor": [3, 4], "reason": [3, 38, 52, 88, 108], "held": [3, 109], "long": [3, 12, 30, 33, 37, 42, 44, 85, 102, 114], "histori": [3, 58, 59, 61, 97, 105, 109], "hasn": 3, "consist": [3, 4, 50, 53, 71, 87, 106], "style": [3, 66, 67, 85, 89, 94, 105, 106], "try": [3, 4, 43, 55, 78, 87, 92, 99, 100, 101, 103, 108], "conform": [3, 7, 9, 10, 11, 12, 13, 14, 18, 19, 20, 21, 22, 32, 33, 34, 37, 38, 41, 42, 43, 44, 45, 46, 53, 83, 104], "strategi": [3, 105], "thu": [3, 4, 53, 87], "79": [3, 52, 81, 82], "charact": [3, 30, 71, 81, 82, 83, 93, 106], "less": [3, 7, 18, 19, 26, 32, 34, 57, 68, 100], "break": [3, 27, 66, 101, 105, 108], "sensibli": 3, "indent": 3, "space": [3, 7, 32, 33, 41, 42, 43, 44, 48, 50, 83, 84, 100, 106, 108], "per": [3, 19, 26, 66, 83, 105, 108], "capitalclass": 3, "capit": 3, "noun": 3, "underscore_method": 3, "lower": [3, 7, 19, 24, 30, 32, 33, 34, 38, 40, 42, 43, 44, 57], "case": [3, 9, 10, 12, 13, 14, 15, 27, 28, 30, 36, 44, 48, 52, 53, 55, 57, 68, 82, 87, 89, 96, 99, 100, 104, 105, 106, 108, 111, 114], "underscor": 3, "id": [3, 13, 23, 24, 26, 42, 43, 44, 45, 50, 61, 65, 66, 69, 75, 83, 84, 87, 98, 104, 106, 109], "pycharm": 3, "extern": [3, 5, 7, 48, 100, 101, 105, 106], "tool": [3, 4, 7, 15, 19, 30, 33, 34, 48, 53, 67, 78, 80, 96, 99, 100, 103], "flake8": 3, "lint": 3, "emac": 3, "vim": 3, "check": [3, 4, 5, 11, 26, 27, 28, 50, 53, 57, 60, 66, 67, 72, 89, 102, 108], "elpi": 3, "autom": [3, 53, 102, 108], "formatt": 3, "autopep8": 3, "yapf": 3, "plugin": [3, 4, 95, 100, 101, 108], "strive": [3, 101, 108], "small": [3, 4, 5, 26, 27, 57, 78, 101, 108], "lightweight": [3, 15, 101], "visual": [3, 4, 14, 15, 48, 96, 100, 105], "reli": [3, 53, 60, 83, 100, 108], "treat": [3, 42, 45, 48, 53, 72, 82, 89, 114], "rule": [3, 4, 44, 99, 102, 106, 108], "setup": [3, 100, 101, 102, 105, 108], "script": [3, 7, 9, 10, 11, 12, 13, 14, 15, 33, 53, 83, 102, 104], "standard": [3, 7, 30, 37, 39, 42, 44, 53, 58, 59, 61, 65, 82, 84, 93, 97, 101, 105, 106], "pyx": 3, "convert": [3, 24, 37, 48, 52, 53, 57, 62, 63, 76, 78, 80, 81, 83, 86, 105, 113], "newer": [3, 86], "than": [3, 13, 14, 15, 18, 19, 26, 28, 30, 36, 40, 42, 50, 53, 57, 60, 65, 71, 75, 83, 88, 99, 105, 106, 108], "alreadi": [3, 7, 11, 14, 16, 33, 34, 46, 50, 53, 66, 99, 100, 106, 109], "forc": [3, 26, 50, 52, 53, 57, 58, 60, 61, 63, 89, 94, 103, 105, 106, 107, 109, 111, 114], "trigger": [3, 102, 108], "convers": [3, 13, 57, 99], "deliv": 3, "who": [3, 4, 7, 16, 101], "automat": [3, 7, 10, 16, 18, 30, 55, 57, 65, 66, 76, 79, 89, 94, 99, 101, 102, 103, 104, 106, 114], "outdat": 3, "place": [3, 10, 34, 94, 99, 102], "final": [3, 10, 13, 15, 19, 39, 40, 48, 87, 102, 106], "fortran": 3, "librari": [3, 9, 10, 14, 15, 19, 33, 34, 39, 46, 48, 50, 55, 58, 61, 62, 79, 80, 85, 99, 101, 102, 104, 105, 108], "dedic": 3, "src": [3, 84, 87], "tree": 3, "lib": [3, 11, 12, 13, 15, 16, 18, 20, 21, 28, 33, 37, 38, 40, 42, 43, 44, 45, 49, 105, 108], "_distanc": 3, "distanc": [3, 6, 8, 13, 15, 16, 18, 19, 21, 26, 27, 30, 32, 33, 36, 38, 40, 42, 44, 50, 52, 53, 60, 105, 106, 109], "coordin": [3, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 24, 26, 28, 30, 32, 33, 34, 36, 38, 39, 42, 43, 44, 45, 49, 50, 52, 55, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93, 94, 95, 103, 104, 105, 106, 108, 109, 111, 112, 114], "_dcdmodul": 3, "serious": 3, "expect": [3, 9, 10, 14, 19, 34, 37, 39, 48, 50, 55, 76, 99, 105, 106, 108, 109], "aim": [3, 15, 58, 59, 61, 97, 105, 108], "90": [3, 22, 34, 37, 49, 50, 100, 106, 108, 110, 111, 112], "coverag": [3, 101], "reflect": [3, 105, 106], "ongo": [3, 105], "changelog": [3, 102, 105], "entri": [3, 30, 40, 66, 83, 102, 105], "author": [3, 101, 102], "address": [3, 108], "partial": [3, 15, 28, 61, 82, 108, 109, 112], "reformat": 3, "modifi": [3, 4, 6, 11, 28, 37, 78, 102, 105, 112, 114], "progress": [3, 15, 16, 100, 103, 105], "adapt": 3, "big": 3, "wa": [3, 4, 26, 50, 57, 71, 72, 83, 95, 102, 105, 106, 108, 109], "design": [3, 18, 53, 85], "black": [3, 37], "mind": [3, 30], "henc": [3, 4], "pr": [3, 4, 102, 103, 105], "bot": [3, 102], "get": [3, 13, 15, 16, 24, 34, 36, 40, 42, 43, 44, 45, 48, 61, 72, 79, 86, 87, 89, 98, 99, 100, 105, 108, 109], "diff": [3, 108], "after": [3, 4, 13, 26, 30, 36, 48, 53, 57, 95, 103, 106, 108, 111], "repo": 3, "re": [3, 4, 10, 14, 16, 19, 24, 37, 53, 55, 78, 96, 102, 106, 108], "fetch": 3, "content": [3, 4, 95], "modif": [3, 78, 89], "r": [3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 52, 53, 55, 96, 102, 104, 105, 109], "l": [3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 96, 104], "compli": 3, "show": [3, 9, 10, 13, 14, 15, 19, 23, 24, 26, 27, 34, 37, 39, 44, 48, 50, 52, 53, 55, 57, 98, 106, 108, 112], "warn": [3, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 50, 52, 53, 57, 61, 65, 81, 82, 89, 100, 101], "manual": [3, 4, 12, 50, 53, 87, 108], "fault": 3, "Or": [3, 30, 57], "ok": [3, 100, 101, 102, 108], "just": [3, 4, 23, 30, 48, 55, 57, 82, 98, 102, 106, 108, 112], "happi": [3, 22], "revis": 3, "two": [3, 4, 5, 6, 7, 8, 10, 15, 17, 19, 26, 27, 31, 32, 38, 42, 44, 46, 50, 53, 60, 98, 99, 103, 105, 106, 109, 114], "rather": [3, 16, 19, 26, 36, 40, 53, 83, 99, 105, 108], "thing": [3, 4], "sai": 3, "messag": [3, 42, 53, 89, 100, 101, 102], "onc": [3, 16, 39, 53, 55, 102, 104, 105, 108, 111, 112], "ve": [3, 108], "statu": [3, 15, 82], "tell": [3, 4, 19, 53, 84, 93, 108], "track": [3, 30, 34, 105], "path": [3, 4, 5, 7, 19, 30, 32, 41, 53, 57, 104, 105, 108], "again": [3, 13, 19, 30, 34, 37, 43, 46, 89, 96, 105, 108], "someth": [3, 52, 53, 112], "rel": [3, 9, 10, 15, 16, 27, 48, 60, 101, 108, 109], "editor": [3, 15, 45, 52, 53, 104], "comment": [3, 9, 10, 14, 19, 34, 39, 48, 50, 55, 91, 95, 108], "verbos": [3, 16, 26, 27, 28, 53, 102, 103, 108], "short": [3, 27, 30, 33, 34, 108], "50": [3, 19, 37, 44, 49, 52, 53, 57, 104, 110, 113], "subject": 3, "summar": [3, 102], "leav": [3, 55, 108], "blank": [3, 82, 95, 105, 114], "paragraph": 3, "bullet": 3, "tim": 3, "pope": 3, "note": [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 53, 55, 83, 84, 98, 102, 104, 106, 108, 111, 113], "about": [3, 4, 7, 9, 14, 15, 26, 32, 33, 34, 37, 46, 53, 70, 84, 87, 99, 105, 108, 109], "rational": 3, "appear": [3, 34, 38, 48, 63, 68, 96, 102, 103], "publicli": [3, 73], "given": [3, 4, 12, 15, 19, 20, 22, 24, 28, 34, 37, 39, 40, 44, 48, 53, 57, 60, 102, 103, 105, 106, 109, 112, 113, 114], "v": [3, 6, 7, 17, 18, 19, 21, 34, 104, 105], "describ": [3, 7, 15, 32, 34, 36, 39, 40, 87, 103, 104, 106, 108, 114], "usernam": 3, "yet": [3, 108], "happen": [3, 89, 101, 106], "submit": [3, 108], "while": [3, 4, 5, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 26, 28, 30, 33, 34, 37, 38, 39, 42, 43, 44, 45, 46, 49, 52, 53, 80, 83, 84, 87, 98, 100, 102, 103, 106, 108, 111], "avoid": [3, 14, 15, 16, 36, 42, 44, 48, 57, 98, 100, 101, 102, 105], "merg": [3, 4, 9, 10, 19, 34, 102, 103, 105, 108, 114], "conflict": [3, 4, 88, 108], "retriev": [3, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "replai": 3, "top": [3, 4, 44, 59, 61, 87, 88, 96, 97, 101, 108, 109], "lead": [3, 4, 105, 114], "resolv": [3, 48, 99], "uncommit": 3, "stash": 3, "prior": [3, 28, 71, 87, 105, 109], "effect": [3, 7, 10, 32, 43, 100], "reappli": 3, "f": [3, 4, 11, 15, 26, 27, 28, 30, 34, 37, 39, 40, 46, 53, 57, 60, 98, 104, 105, 113], "approach": [3, 4, 27, 33, 38, 104], "failur": [3, 4, 102, 108], "review": [3, 4, 104], "eventu": 3, "navig": [3, 4], "click": [3, 108], "okai": 3, "checklist": 3, "refer": [3, 6, 7, 8, 17, 82, 89, 98, 103, 105, 112], "send": 3, "sent": 3, "maintain": [3, 4, 6, 99, 108], "travi": [3, 108], "appveyor": [3, 108], "codecov": 3, "fail": [3, 71, 83, 88, 89, 94, 100, 102, 105], "did": [3, 14, 81, 105], "restart": [3, 53, 58, 59, 61, 102], "kind": [3, 4, 13, 99, 114], "map": [3, 4, 6, 7, 12, 15, 30, 32, 34, 44, 46, 48, 57, 104, 108], "how": [3, 4, 10, 12, 13, 14, 15, 16, 18, 21, 23, 24, 27, 28, 30, 34, 38, 39, 40, 42, 43, 44, 53, 55, 71, 78, 84, 100, 102, 106, 108, 112, 113, 114], "combin": [3, 4, 7, 26, 32, 34, 42, 50, 53, 87, 106, 114], "topic": [3, 4], "analys": [3, 4, 6, 13, 16, 17, 25, 26, 28, 29, 52, 53, 99, 105], "itself": [3, 4, 5, 6, 7, 8, 9, 10, 16, 19, 30, 34, 39, 68, 79, 96, 106], "larg": [3, 4, 7, 10, 13, 15, 17, 19, 20, 33, 36, 40, 50, 53, 55, 56, 83, 101, 102, 104, 105, 107, 108], "meant": [3, 4], "usag": [3, 4, 26, 34, 53, 99], "individu": [3, 4, 7, 13, 30, 38, 49, 53, 57, 77, 96], "deprec": [3, 4, 108], "notic": [3, 4, 16], "string": [3, 4, 19, 28, 39, 81, 83, 96, 105, 106, 108, 109], "wide": [3, 61], "nice": 3, "text": [3, 13, 15, 16, 20, 21, 23, 24, 30, 36, 38, 40, 43, 44, 57], "napoleon": 3, "specifi": [3, 16, 19, 26, 27, 30, 42, 43, 44, 49, 53, 57, 60, 61, 66, 83, 93, 103, 106, 108, 114], "extend": [3, 23, 24, 50, 58, 59, 61, 65, 84, 97, 106], "manner": [3, 102], "onlin": [3, 6, 10], "find": [3, 4, 7, 16, 19, 25, 37, 40, 55, 67, 92], "particular": [3, 4, 22, 30, 40, 46, 48, 67, 91, 98, 100, 108, 110, 111], "been": [3, 15, 16, 18, 37, 48, 53, 60, 67, 70, 87, 102, 104, 105, 108, 109], "written": [3, 10, 53, 66, 71, 76, 79, 81, 83, 84, 87, 89, 93, 96, 103, 105], "documentation_pag": 3, "www": [3, 4, 19, 20, 30, 34, 37, 99, 104], "org": [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 99, 104], "html": [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104, 108], "importerror": [3, 101, 108], "build_ext": 3, "inplac": [3, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 38, 39, 42, 43, 44, 45, 49], "retri": 3, "home": [3, 11, 12, 13, 15, 16, 18, 20, 21, 28, 33, 37, 38, 40, 42, 43, 44, 45, 49], "index": [3, 4, 11, 13, 15, 16, 19, 26, 27, 30, 31, 33, 34, 40, 48, 53, 56, 75, 83, 84, 87, 96, 103, 105, 108, 109, 110, 111], "tinker": [3, 58, 59, 61, 97], "cycl": [3, 30, 44, 104, 108], "rebuild": [3, 4], "becom": [3, 4, 7, 9, 10, 31, 32, 33, 36, 40, 109], "tediou": [3, 4], "autobuild": [3, 4], "sentenc": 3, "doe": [3, 4, 10, 13, 14, 15, 16, 19, 27, 30, 34, 40, 48, 52, 53, 55, 57, 63, 66, 71, 72, 80, 81, 82, 84, 87, 88, 92, 100, 101, 102, 105, 106, 108, 109, 110, 111, 112, 114], "def": [3, 10, 15, 16, 18, 21, 27, 44, 50, 105, 108, 112], "func": [3, 15], "arg1": 3, "arg2": 3, "summari": [3, 39, 53, 104, 108], "paramet": [3, 16, 43, 52, 53, 86, 104, 105, 108, 109], "int": [3, 26, 30, 50, 109, 114], "str": [3, 96, 108], "further": [3, 13, 15, 27, 50, 52, 53, 60, 62, 87, 98, 100, 105, 106], "breakdown": [3, 114], "variabl": [3, 4, 5, 30, 34, 49, 100, 104, 105], "markup": 3, "least": [3, 16, 31, 39, 42, 46, 67, 83, 98, 108], "head": [3, 18, 19, 20, 21, 33, 34, 53], "otherwis": [3, 4, 11, 34, 44, 55, 83, 89, 108], "parser": [3, 63, 65, 66, 69, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 91, 92, 93, 95, 99, 105, 106, 114], "render": [3, 4, 10, 48, 55, 102], "correctli": [3, 4, 60, 67, 88, 104, 105, 108], "bla": 3, "THE": 3, "versionad": 3, "properli": [3, 102, 105], "mess": [3, 15], "sometim": [3, 15, 50, 57, 60, 61, 71, 89, 105, 111, 114], "tri": [3, 61, 67, 79, 86, 109, 114], "across": [3, 12, 48, 50, 89, 94, 102, 106], "n_atom": [3, 10, 15, 26, 50, 53, 103, 105, 108, 109, 111, 114], "n_residu": [3, 37, 39, 50, 53, 109], "mathjax": 3, "latex": 3, "math": [3, 105, 109], "tag": [3, 100, 102, 105], "block": [3, 12, 16, 30, 36, 53, 85, 99], "equat": [3, 13, 14, 108], "pi": [3, 36, 113], "direct": [3, 4, 30, 46, 57, 87, 98, 105], "ident": [3, 4, 12, 16, 42, 44, 72, 87, 114], "raw": [3, 103], "prefix": [3, 4, 106], "letter": [3, 33, 83, 104], "backslash": 3, "unexpect": [3, 16], "rotat": [3, 7, 8, 9, 10, 11, 13, 14, 38, 48, 53, 104, 109, 112], "matrix": [3, 7, 8, 9, 10, 11, 12, 13, 14, 24, 34, 38, 39, 42, 44, 45, 46, 53, 104], "select": [3, 4, 6, 7, 9, 10, 11, 12, 14, 16, 17, 18, 19, 22, 25, 26, 27, 30, 31, 33, 34, 36, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 66, 98, 99, 105, 110, 114], "mathsf": [3, 13], "3x3": 3, "orthogon": [3, 7, 32, 34, 52, 81, 82], "transform": [3, 6, 7, 13, 15, 32, 33, 34, 105, 109, 111, 114], "vector": [3, 7, 13, 24, 31, 32, 33, 34, 39, 48, 50, 67, 105, 109], "mathbf": [3, 13, 14, 16, 31, 34, 36], "rightarrow": 3, "stackoverflow": [3, 48], "express": [3, 4, 13, 106], "construct": [3, 6, 7, 15, 32, 34, 99], "annot": [3, 46, 105], "quickli": [3, 26, 83, 99], "newli": [3, 102, 105], "primari": [3, 53, 98, 109], "y": [3, 12, 13, 15, 16, 19, 20, 34, 48, 49, 50, 57, 66, 81, 82, 83, 95, 106], "z": [3, 15, 16, 26, 33, 39, 48, 50, 57, 66, 81, 82, 83, 95, 104, 106, 112], "mention": 3, "entiti": 3, "versionchang": 3, "although": [3, 7, 16, 30, 48, 63, 67, 79, 82, 83, 84, 105, 111, 112], "accept": [3, 13, 30, 43, 44, 53, 105, 106, 109, 112], "assum": [3, 50, 53, 57, 60, 61, 66, 67, 68, 79, 83, 88, 100, 114], "longer": [3, 12, 27, 57, 71, 105, 106, 108], "remov": [3, 4, 28, 30, 37, 40, 53, 102, 105, 108], "futur": [3, 15, 101, 105, 108], "enclos": 3, "scope": [3, 108], "whole": [3, 42, 53, 55, 105, 108, 112], "toc": 3, "analysisbas": [3, 15, 16, 105], "ones": [3, 33, 87, 106], "overwritten": 3, "inherit": [3, 108], "distinguish": [3, 34], "minim": [3, 7, 8, 108], "demonstr": [3, 7, 8, 13, 18, 19, 26, 30], "best": [3, 12, 19, 20, 104, 108], "practic": [3, 12, 48, 105], "intent": 3, "behind": 3, "choic": [3, 4, 38, 108], "api": [3, 9, 10, 11, 13, 14, 15, 19, 22, 23, 24, 30, 31, 34, 36, 37, 38, 40, 42, 43, 44, 45, 46, 49, 85, 102, 103, 105], "promot": 3, "unifi": 3, "concis": 3, "come": [3, 53, 84, 99, 102, 108, 114], "overwrit": [3, 30, 96], "restructur": 3, "put": [3, 4, 16, 50], "amend": [3, 105], "friend": 3, "pile": 3, "onto": [3, 7, 30, 32, 33, 34, 37, 43, 44, 48, 111], "preview": 3, "ipython": [3, 4, 50, 109], "mark": [3, 30, 103, 104, 108], "oper": [3, 9, 15, 16, 30, 39, 53, 103, 105, 106], "docstr": 4, "class": [4, 7, 12, 13, 14, 15, 17, 18, 19, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 49, 53, 57, 83, 96, 98, 100, 101, 103, 105, 108, 109, 113, 114], "ensur": [4, 36, 100, 102, 103, 106, 108], "nbsphinx": 4, "dure": [4, 10, 13, 15, 19, 57, 89, 103], "doc": [4, 9, 10, 11, 13, 14, 22, 23, 24, 30, 31, 34, 36, 37, 38, 40, 42, 43, 44, 45, 46, 49, 102], "python": [4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 87, 98, 99, 100, 101, 102, 104, 105], "mean": [4, 6, 7, 8, 9, 11, 16, 19, 24, 26, 27, 30, 32, 33, 34, 39, 42, 43, 45, 48, 69, 75, 80, 84, 87, 98, 99, 100, 103, 105, 106, 108, 114], "bit": [4, 12, 105], "complex": [4, 15, 16, 28, 53, 99], "branch": [4, 82, 105, 108], "view": [4, 6, 14, 19, 30, 34, 39, 48, 50, 55, 108, 109, 114], "cell": [4, 9, 10, 11, 14, 19, 26, 34, 39, 48, 49, 50, 53, 55, 67, 81, 82, 105, 106, 108, 112], "applic": [4, 37, 58, 61, 66, 98, 114], "pull": [4, 10, 45, 70, 82, 101, 102, 105, 108, 111], "github": [4, 6, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 33, 38, 39, 43, 44, 49, 100, 102, 105], "depend": [4, 10, 16, 26, 53, 60, 61, 68, 100, 102, 104, 105, 106, 108, 112], "nglview": [4, 9, 10, 14, 19, 34, 39, 50, 52, 55, 104], "conda": [4, 7, 53, 79], "mamba": [4, 100], "micromamba": [4, 108], "yml": [4, 108], "quiet": 4, "nbextens": 4, "enabl": [4, 15, 85, 89, 94, 104, 105, 108], "sy": [4, 52], "output": [4, 10, 14, 16, 30, 34, 38, 39, 40, 42, 43, 44, 48, 53, 55, 63, 70, 72, 83, 105, 108, 112], "browser": [4, 108], "homepag": 4, "abil": [4, 105], "interact": [4, 6, 9, 10, 12, 14, 19, 26, 27, 28, 34, 36, 39, 50, 52, 55, 87, 104, 109], "viewer": 4, "jupyer": 4, "widget": [4, 9, 10, 14, 19, 34, 39, 48, 50, 55, 100], "whenev": [4, 102, 108], "advantag": 4, "determin": [4, 6, 7, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 29, 33, 34, 37, 46, 53, 57, 98, 104], "still": [4, 10, 15, 27, 60, 101, 102, 103, 105, 108], "gave": 4, "were": [4, 19, 28, 34, 67, 98, 102, 104, 105, 106, 108], "ini": 4, "sanitize_output": 4, "cfg": [4, 100], "polymers_and_membran": 4, "ipynb": [4, 43, 114], "replac": [4, 53, 100, 103, 105, 109], "regex": 4, "download": [4, 5, 6, 14, 15, 100, 102, 108], "scan": 4, "match": [4, 6, 7, 9, 10, 13, 17, 37, 44, 100, 102, 105, 106, 108], "word": [4, 37, 104], "exactli": [4, 16, 88, 109], "bar": [4, 15, 31, 100, 103, 105], "tend": 4, "correct": [4, 14, 26, 50, 53, 67, 102, 104, 105, 108], "memori": [4, 10, 11, 12, 14, 15, 26, 45, 53, 55, 56, 98, 99, 105, 108, 111, 112, 114], "locat": [4, 5, 9, 81, 82, 102, 106, 109], "allevi": 4, "regular": [4, 57, 87], "know": [4, 15, 16, 50, 53, 102, 108], "vari": [4, 37, 38, 44], "dynam": [4, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 52, 55, 99, 104, 105, 110, 111, 112, 114], "constant": [4, 26, 33, 49, 52, 66, 76, 105, 106], "won": 4, "prevent": [4, 105], "spuriou": 4, "possibl": [4, 28, 30, 46, 57, 60, 82, 99, 103, 104, 106, 108], "extra": [4, 15, 16, 30, 83, 100], "softwar": [4, 15, 42, 43, 44, 45, 100, 104, 106, 108], "program": [4, 7, 14, 30, 34, 39, 50, 53, 93, 96, 99, 100, 104], "therefor": [4, 13, 14, 15, 19, 33, 37, 42, 43, 50, 52, 53, 72, 79, 92, 95, 98, 108], "ignor": [4, 9, 10, 14, 22, 23, 24, 27, 30, 33, 34, 37, 46, 50, 52, 53, 81, 82, 84, 95, 105, 106, 114], "unless": [4, 42, 61, 87, 100, 106, 114], "Of": 4, "cours": [4, 37, 55], "occur": [4, 19], "unix": [4, 30, 106], "impli": 4, "environment": 4, "path_to_hole2": 4, "ex": [4, 30], "usual": [4, 13, 34, 53, 56, 82], "difficult": [4, 7, 19, 32, 40, 55], "emb": [4, 7, 32, 33, 55], "imag": [4, 9, 10, 12, 14, 15, 19, 22, 23, 34, 39, 50, 55, 105, 108], "edit": [4, 34, 102, 104], "conf": 4, "url": [4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "site": [4, 11, 12, 13, 15, 16, 18, 20, 21, 28, 33, 36, 37, 38, 42, 43, 44, 45, 49, 108], "site_url": 4, "person": 4, "my_user_nam": 4, "io": [4, 15, 79, 98], "macro": [4, 53, 96], "right": [4, 13, 14, 31, 40, 81, 106], "dropdown": 4, "websit": [4, 15], "publish": [4, 9, 10, 11, 12, 13, 14, 16, 21, 26, 27, 28, 30, 33, 34, 38, 39, 42, 43, 44, 45, 46, 53, 61, 102, 104], "my_branch": 4, "constantli": [4, 33], "pip": [4, 7, 53, 101, 104, 105, 108], "sphinx_autobuild": 4, "webserv": 4, "localhost": 4, "8000": [4, 83], "refresh": 4, "inconsist": [4, 105], "whitespac": [4, 83], "miss": [4, 27, 50, 57, 81, 82, 84, 101, 103, 105, 108], "carriag": 4, "perform": [4, 13, 15, 26, 43, 44, 48, 52, 85, 100, 108, 111, 112], "uninstal": 4, "offer": [5, 48, 105], "collect": [5, 6, 7, 30, 32, 34, 53, 104, 105, 112], "dataset": [5, 14, 15, 114], "primarili": 5, "workshop": 5, "interfac": [5, 26, 53], "cach": [5, 15, 100], "certain": [5, 7, 13, 17, 19, 21, 30, 40, 42, 53, 57, 61, 66, 98, 106, 108, 109, 110, 114], "figshar": [5, 14, 104], "zenodo": 5, "datadryad": 5, "upon": [5, 102], "significantli": [5, 13, 100, 105], "adk": [5, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55], "fetch_adk_equilibrium": [5, 14, 15], "descr": 5, "mdanalysis_data": 5, "environ": [5, 79, 100, 104], "chosen": [5, 27, 42, 44, 57, 112], "perman": [5, 111], "echo": 5, "get_data_hom": 5, "And": [5, 55, 96, 100], "clear_data_hom": 5, "found": [5, 19, 26, 28, 30, 31, 37, 42, 53, 103], "jupyt": [6, 9, 10, 13, 26, 52, 55, 100, 104], "notebook": [6, 9, 10, 11, 26, 27, 34, 48, 52, 53, 55, 104, 114], "binder": 6, "quick": [6, 12, 16], "ad": [6, 34, 42, 44, 57, 60, 85, 98, 99, 105, 107, 108, 114], "align": [6, 12, 13, 34, 42, 44, 45, 53, 57, 83, 105, 109, 112], "rm": [6, 11, 12, 13, 14, 26, 27, 30, 53, 110], "fit": [6, 14, 27, 31, 39, 42, 46, 48, 53, 56, 112], "structur": [6, 8, 10, 11, 12, 16, 17, 19, 20, 21, 30, 34, 37, 38, 39, 41, 46, 52, 56, 58, 59, 61, 96, 97, 103, 104, 106, 108, 111, 114], "calcul": [6, 7, 8, 9, 10, 11, 16, 18, 19, 25, 33, 34, 35, 39, 41, 46, 47, 53, 55, 57, 61, 100, 104, 105, 109], "squar": [6, 7, 8, 9, 11, 12, 15, 16, 24, 38, 104, 105], "deviat": [6, 7, 8, 9, 11, 30, 37, 39, 42, 44, 83, 104], "pairwis": [6, 7, 8, 13, 14, 19, 39, 40], "rmsd": [6, 7, 8, 9, 10, 11, 14, 30, 33, 41, 46, 57, 104, 110], "fluctuat": [6, 7, 8, 13, 19, 27, 34], "contact": [6, 99, 104], "wise": [6, 7, 17, 23, 53], "fraction": [6, 7, 17, 18, 20, 21, 76], "nativ": [6, 7, 15, 17, 20, 21, 63, 100, 104], "q1": [6, 7, 17, 18, 19, 21], "q2": [6, 7, 17, 18, 19, 21], "cutoff": [6, 7, 17, 18, 20, 26, 38, 57, 106], "write": [6, 7, 9, 11, 12, 14, 15, 17, 19, 20, 21, 22, 23, 24, 30, 34, 46, 48, 50, 52, 61, 62, 64, 68, 78, 90, 99, 105, 111, 113, 114], "harmon": [6, 7, 19, 20, 33, 41, 87, 104], "ensembl": [6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 41, 46, 48, 49, 50, 55, 104], "cluster": [6, 7, 15, 41, 44, 46], "dimens": [6, 22, 23, 26, 29, 37, 41, 49, 50, 55, 67, 81, 82, 104, 105, 106, 111, 112, 114], "reduct": [6, 34, 41, 104], "converg": [6, 7, 12, 13, 38, 41, 42, 104], "elast": [6, 7, 35], "network": [6, 7, 35], "averag": [6, 7, 8, 16, 26, 27, 31, 34, 35, 39, 40, 42, 44, 45, 49, 55], "radial": [6, 7, 35], "rdf": [6, 7, 35, 36, 105], "helix": [6, 7, 35, 104, 105], "princip": [6, 7, 32, 33, 43, 44, 104, 109], "compon": [6, 7, 32, 33, 43, 44, 104, 108], "non": [6, 7, 13, 19, 32, 36, 57, 60, 88, 105, 106], "linear": [6, 7, 31, 32, 34], "diffus": [6, 7, 32, 34, 104], "polym": [6, 104], "membran": [6, 26, 27, 28, 30], "persist": [6, 7, 10, 15, 26, 29, 53, 55, 111], "pore": [6, 7, 29, 104], "hole2": [6, 7, 29, 105], "volumetr": 6, "charg": [6, 7, 13, 28, 47, 48, 61, 66, 81, 82, 83, 86, 87, 92, 97, 105, 106, 109, 114], "densiti": [6, 7, 36, 42, 44, 47, 52, 57, 105], "axi": [6, 7, 10, 12, 15, 16, 22, 30, 34, 39, 44, 47, 48, 50, 55, 71, 109, 112], "solvent": [6, 7, 40, 47, 50, 114], "around": [6, 7, 13, 14, 16, 19, 22, 26, 28, 30, 34, 36, 40, 42, 47, 50, 52, 53, 99, 100, 106, 114], "data": [7, 15, 19, 20, 27, 32, 33, 34, 37, 39, 42, 43, 44, 46, 53, 55, 56, 58, 59, 61, 81, 82, 83, 84, 85, 89, 94, 95, 97, 98, 99, 103, 105, 109, 110, 111, 112, 113], "rang": [7, 15, 16, 30, 33, 34, 36, 40, 44, 50, 53, 57, 101, 106, 109], "algorithm": [7, 8, 9, 10, 11, 12, 13, 14, 16, 19, 33, 34, 39, 41, 42, 43, 44, 48, 52, 53, 60, 100, 104], "quantiti": [7, 8, 19, 53, 98, 105, 113], "uniqu": [7, 26, 34, 40, 57, 105, 108], "bundl": 7, "contribut": [7, 13, 36, 99, 102, 105, 108], "variou": [7, 26, 85, 105], "research": [7, 15, 19, 20, 104], "citat": 7, "parallel": [7, 100, 105], "paralleliz": 7, "encor": [7, 41, 42, 43, 44, 45, 104, 105], "hole": [7, 100, 104, 105], "yourself": [7, 30, 37, 45, 48], "align_structur": [7, 8], "align_trajectory_first": [7, 8], "align_trajectori": [7, 8], "rmsf": [7, 8, 12, 13], "sens": [7, 8, 84, 108, 109], "fast": [7, 8, 9, 10, 11, 12, 13, 14, 15, 33, 53, 79, 99, 103, 104], "qcp": [7, 8, 9, 10, 11, 12, 13, 14, 33], "the05": [7, 8, 9, 10, 11, 12, 13, 14, 33, 104], "lat09": [7, 8, 9, 10, 11, 14, 104], "cite": [7, 8, 9, 10, 11, 12, 13, 14, 16, 26, 27, 28, 30, 33, 34, 38, 39, 42, 43, 44, 45, 46, 53, 104], "rapidli": [7, 17, 37], "retain": [7, 17, 19, 21, 85], "insight": [7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104], "fold": [7, 17, 19, 20, 104], "movement": [7, 13, 17, 19, 34, 57], "3n": [7, 32, 34, 41], "dimension": [7, 12, 32, 33, 41, 44, 45, 104], "tpb": [7, 41, 42, 43, 44, 45, 104], "estim": [7, 12, 41, 45], "measur": [7, 12, 13, 16, 30, 31, 41, 48, 66, 108], "pair": [7, 26, 28, 30, 36, 40, 41, 44, 46, 105], "transit": [7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 53, 55, 104], "reduc": [7, 11, 30, 33, 41, 42, 43, 44, 85, 94, 100], "remain": [7, 13, 16, 19, 24, 27, 32, 49, 53, 57, 104, 105, 108, 111], "extract": [7, 26, 32, 53, 57, 98, 104], "motion": [7, 32, 34, 38], "physic": [7, 32, 33, 34, 104], "state": [7, 12, 13, 14, 15, 19, 32, 33, 34, 38, 53, 102, 103, 104, 111], "represent": [7, 32, 48, 67, 76, 96, 105, 112, 114], "explor": [7, 15, 32], "techniqu": [7, 32, 33, 34], "varianc": [7, 32, 34, 42, 43], "largest": [7, 32, 34, 46, 108], "uncorrel": [7, 27, 32, 34], "success": [7, 32, 34, 46], "essenti": [7, 32, 33, 34, 104, 108], "subspac": [7, 32, 34, 43], "visualis": [7, 9, 10, 19, 22, 23, 24, 32, 33, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 50, 55, 99], "repres": [7, 12, 13, 15, 20, 27, 32, 33, 34, 38, 39, 40, 42, 43, 44, 48, 50, 53, 57, 60, 67, 103, 109], "neighour": [7, 32, 33], "geometri": [7, 13, 23, 30, 32, 33, 37, 39, 48, 50, 53, 104, 106, 109, 112], "intrins": [7, 32, 33], "manifold": [7, 32, 33], "suitabl": [7, 16, 32, 33, 49], "sampl": [7, 9, 10, 11, 12, 13, 18, 19, 20, 21, 30, 32, 33, 34, 39, 42, 43, 44, 53, 104], "replica": [7, 32, 33], "exchang": [7, 32, 33], "simul": [7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 51, 53, 55, 57, 58, 61, 67, 68, 85, 104], "region": [7, 14, 32, 33, 37, 43], "disconnect": [7, 32, 33], "meaning": [7, 32, 33, 53, 98, 114], "cannot": [7, 15, 32, 33, 37, 60, 68, 81, 82, 83, 103, 108, 109], "approxim": [7, 32, 33], "pca": [7, 32, 34, 43, 44, 105], "explicit": [7, 32, 33, 109], "eigenvector": [7, 32, 33, 34, 38], "immedi": [7, 15, 19, 32, 33, 102, 108], "hydrogen_bond": [7, 25], "basic": [7, 18, 19, 21, 25, 27, 28, 53, 65, 87], "advanc": [7, 15, 25, 26, 27, 46, 100], "lifetim": [7, 25, 26, 28, 89], "decemb": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 104], "2022": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 105], "minimum": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 55, 61, 102, 105, 108], "madwb11": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "glb": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "ncr18": [9, 10, 55, 104], "minimis": [9, 10, 11, 12, 13, 14, 42, 43, 52], "crd": [9, 10, 12, 13, 45, 46, 52, 53, 58, 59, 61, 88, 97, 105, 109], "dcd2": [9, 10, 12, 16, 38, 42, 44, 45, 46], "nv": [9, 10, 14, 19, 34, 39, 48, 50, 55], "suppress": [9, 10, 14, 22, 23, 24, 27, 30, 34, 46, 50, 52, 53], "filterwarn": [9, 10, 14, 22, 23, 24, 27, 30, 34, 46, 50, 52, 53], "adenyl": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 53, 55, 104], "kinas": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 53, 55, 104], "phosophotransferas": [9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55], "enzym": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 53, 55], "bdpw09": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "close": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 33, 34, 37, 39, 40, 42, 43, 44, 45, 46, 48, 50, 53, 55, 104], "adk_open": [9, 10, 12, 19], "adk_clos": [9, 10, 12, 19], "adk_open_view": [9, 19], "show_mdanalysi": [9, 10, 14, 19, 34, 39, 48, 50, 55], "adk_closed_view": [9, 19], "even": [9, 15, 18, 22, 48, 53, 60, 61, 66, 68, 102, 104, 105, 106, 108, 109, 110, 111], "obviou": [9, 10], "posit": [9, 10, 11, 13, 14, 15, 16, 19, 20, 21, 23, 24, 26, 34, 38, 45, 48, 52, 66, 67, 76, 103, 105, 106, 108, 109, 110, 111, 112], "merged_view": [9, 10], "mobil": [9, 11, 13, 14], "target": [9, 13, 23, 100, 105], "old_rmsd": 9, "new_rmsd": 9, "By": [9, 19, 26, 30, 42, 44, 49, 61, 66, 68, 99, 106], "match_atom": [9, 10], "attempt": [9, 81, 105], "712154435976014": 9, "817293751703919": 9, "aligned_view": 9, "could": [9, 13, 16, 18, 23, 24, 34, 48, 88, 109], "alpha": [9, 11, 13, 14, 19, 20, 22, 23, 24, 39, 40, 48, 50, 53, 55, 60, 67, 81, 82, 103, 106], "carbon": [9, 11, 13, 14, 19, 20, 22, 23, 24, 31, 36, 40, 60, 106], "atomist": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104], "backbon": [9, 11, 13, 14, 33, 34, 37, 45, 53, 98, 106], "somewhat": [9, 34], "contriv": 9, "214": [9, 13, 24, 27, 37, 46, 50, 53], "991465038265208": 9, "603704620787127": 9, "shifted_aligned_view": 9, "temporarili": 9, "flip": 9, "back": [9, 48, 52, 53, 62, 79, 80, 86, 102, 103, 108, 110, 111, 112, 113], "lt": [9, 10, 12, 13, 14, 15, 16, 18, 22, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 42, 43, 44, 46, 48, 49, 50, 52, 53], "timestep": [9, 11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 38, 39, 42, 43, 44, 45, 49, 53, 55, 57, 61, 81, 89, 95, 105, 106, 108, 110, 111, 112, 114], "101": [9, 82, 98], "gt": [9, 10, 12, 13, 14, 15, 16, 18, 22, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 42, 43, 44, 46, 48, 49, 50, 52, 53], "reset_view": 9, "save": [9, 10, 13, 14, 15, 16, 19, 26, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 88, 96, 105, 108], "from_file_view": 9, "oliv": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "beckstein": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 104], "elizabeth": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "j": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 104, 113], "den": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 104], "juan": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "perilla": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104], "thoma": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "woolf": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 104], "zip": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104], "unzip": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104], "journal": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "biologi": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "394": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 78, 104], "160": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104], "176": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 82, 104], "novemb": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "2009": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 53, 55, 104], "00107": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "linkinghub": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "elsevi": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "pii": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "s0022283609011164": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 55, 104], "doi": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 104], "1016": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104], "jmb": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104], "09": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104, 113], "009": [9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 55, 104], "richard": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "gower": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "max": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 55, 66, 104, 105], "jonathan": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "barnoud": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "tyler": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "reddi": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "manuel": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "melo": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "sean": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "seyler": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "jan": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "doma\u0144ski": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "david": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 55, 104], "dotson": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "s\u00e9bastien": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "buchoux": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "ian": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "kennei": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "rapid": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "proceed": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 100, 104], "15th": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "scienc": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "confer": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "98": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104, 111], "105": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 103, 104], "2016": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 87, 104], "00152": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "scipy2016": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "oliver_beckstein": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 55, 104], "25080": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "majora": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "629e541a": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "00e": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 104], "pu": [9, 10, 11, 14, 53, 104], "liu": [9, 10, 11, 14, 53, 104], "dimitri": [9, 10, 11, 14, 104], "k": [9, 10, 11, 14, 24, 30, 33, 40, 42, 43, 48, 52, 53, 57, 104], "agrafioti": [9, 10, 11, 14, 53, 104], "dougla": [9, 10, 11, 12, 13, 14, 33, 53, 104], "theobald": [9, 10, 11, 12, 13, 14, 33, 53, 104], "optim": [9, 10, 11, 13, 14, 27, 53, 104], "macromolecular": [9, 10, 11, 14, 46, 53, 59, 104], "superposit": [9, 10, 11, 13, 14, 53, 104], "chemistri": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 55, 104], "wilei": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 55, 104], "1002": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 52, 53, 55, 104], "jcc": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 52, 53, 55, 104], "21439": [9, 10, 11, 14, 104], "naveen": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 55, 104], "michaud": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 52, 53, 55, 104], "agraw": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 52, 53, 55, 104], "2319": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 52, 53, 55, 104], "2327": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 52, 53, 55, 104], "juli": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 55, 104], "2011": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 52, 53, 55, 104], "00778": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 55, 104], "21787": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 49, 52, 53, 55, 104], "hai": [9, 10, 52, 55, 104], "nguyen": [9, 10, 52, 55, 104], "alexand": [9, 10, 52, 55, 104], "rose": [9, 10, 52, 55, 104], "graphic": [9, 10, 30, 52, 55, 96, 104], "bioinformat": [9, 10, 34, 37, 52, 55, 104], "1241": [9, 10, 52, 55, 104], "1242": [9, 10, 52, 55, 104], "april": [9, 10, 39, 55, 104], "2018": [9, 10, 26, 27, 28, 34, 52, 55, 87, 104], "00024": [9, 10, 55, 104], "academ": [9, 10, 19, 20, 55, 104], "oup": [9, 10, 19, 20, 55, 104], "articl": [9, 10, 14, 19, 20, 30, 37, 42, 43, 44, 45, 55, 104], "4721781": [9, 10, 55, 104], "1093": [9, 10, 19, 20, 52, 55, 104], "btx789": [9, 10, 52, 55, 104], "quaternion": [9, 10, 11, 12, 13, 14, 33, 53, 104], "characterist": [9, 10, 11, 12, 13, 14, 33, 53, 104], "polynomi": [9, 10, 11, 12, 13, 14, 33, 53, 104], "acta": [9, 10, 11, 12, 13, 14, 33, 53, 104], "crystallographica": [9, 10, 11, 12, 13, 14, 33, 53, 104], "foundat": [9, 10, 11, 12, 13, 14, 33, 104], "crystallographi": [9, 10, 11, 12, 13, 14, 33, 104], "61": [9, 10, 11, 12, 13, 14, 30, 33, 40, 53, 57, 81, 82, 98, 104], "478": [9, 10, 11, 12, 13, 14, 33, 53, 104], "480": [9, 10, 11, 12, 13, 14, 33, 53, 83, 104], "2005": [9, 10, 11, 12, 13, 14, 33, 53, 104], "00127": [9, 10, 11, 12, 13, 14, 33, 104], "iucr": [9, 10, 11, 12, 13, 14, 33, 104], "cgi": [9, 10, 11, 12, 13, 14, 19, 20, 33, 104], "paper": [9, 10, 11, 12, 13, 14, 33, 34, 53, 104], "s0108767305015266": [9, 10, 11, 12, 13, 14, 33, 104], "1107": [9, 10, 11, 12, 13, 14, 33, 104], "alignto": [10, 11], "effici": [10, 11, 13, 26, 27, 89, 94, 99, 111], "entir": [10, 11, 13, 30, 36, 37, 40, 53, 103, 106, 108, 114], "filenam": [10, 11, 14, 30, 57, 96, 103], "merged1": 10, "merged1_view": 10, "superpos": 10, "renam": [10, 57], "colour": [10, 14, 30, 48, 108], "merged2": 10, "merged2_view": 10, "feasibl": 10, "devic": [10, 103], "accomplish": [10, 30, 48], "in_memori": [10, 11, 12, 14, 34, 55, 103, 114], "merged3": 10, "ourselv": [10, 16, 50], "analysisfromfunct": [10, 15, 16], "np": [10, 12, 15, 16, 18, 19, 20, 21, 23, 24, 26, 27, 28, 30, 33, 34, 37, 40, 42, 43, 44, 45, 46, 48, 49, 50, 55, 57, 101, 103, 105, 108, 112, 114], "memoryread": [10, 50, 103, 105, 114], "copy_coord": 10, "aligned_coord": 10, "timeseri": [10, 15, 16, 18, 19, 20, 21, 53, 57, 105], "shape": [10, 12, 13, 16, 19, 21, 23, 24, 26, 27, 30, 31, 33, 34, 37, 39, 40, 43, 44, 45, 48, 50, 53, 109], "3341": [10, 15, 53, 96, 98, 103], "contrast": 10, "adk_coord": 10, "stack": [10, 108], "adk_traj_coord": 10, "join": [10, 36, 99, 108], "hstack": 10, "merged_coord": 10, "load_new": [10, 19, 34, 103, 114], "format": [10, 13, 14, 19, 21, 22, 23, 30, 31, 33, 34, 36, 37, 40, 42, 43, 44, 45, 48, 52, 53, 58, 60, 62, 64, 65, 66, 67, 69, 70, 71, 72, 73, 76, 78, 80, 83, 84, 85, 86, 88, 89, 91, 92, 93, 94, 95, 97, 98, 99, 102, 104, 105, 106, 111, 113, 114], "6682": 10, "m2_view": 10, "contrib": [10, 14, 34, 39, 48, 55], "movi": [10, 14, 34, 39, 48, 55], "moviemak": [10, 14, 34, 39, 48, 55], "gif": [10, 14, 34, 39, 48, 55], "moviepi": 10, "4th": [10, 34, 39, 48], "render_param": [10, 14, 34, 39, 48, 55], "factor": [10, 34, 39, 42, 48, 55, 61, 81, 82, 109, 113], "higher": [10, 13, 33, 42, 105], "qualiti": [10, 12, 14, 34, 39, 48, 55, 85], "writer": [10, 53, 62, 64, 65, 66, 67, 68, 71, 73, 78, 79, 81, 82, 83, 89, 90, 94, 95, 96, 103, 105, 108, 111], "xyz": [10, 50, 53, 58, 59, 61, 73, 91, 97, 98, 103, 109], "w": [10, 19, 20, 30, 33, 34, 37, 53, 66, 96, 103, 104, 111], "aligntraj": [11, 12, 14, 34, 45], "ref": [11, 13, 14, 19, 30, 37, 46, 108], "pbarletta": [11, 12, 13, 15, 16, 18, 20, 21, 28, 33, 37, 38, 40, 42, 43, 44, 45, 49], "mambaforg": [11, 12, 13, 15, 16, 18, 20, 21, 28, 33, 37, 38, 40, 42, 43, 44, 45, 49], "python3": [11, 12, 13, 15, 16, 18, 20, 21, 28, 33, 37, 38, 40, 42, 43, 44, 45, 49, 108], "165": [11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 38, 39, 42, 43, 44, 45, 49], "deprecationwarn": [11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 38, 39, 40, 42, 43, 44, 45, 49, 108], "dcdreader": [11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 38, 39, 42, 43, 44, 45, 49, 67, 68], "independ": [11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 38, 39, 42, 43, 44, 45, 49, 57, 101], "reader": [11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 28, 33, 38, 39, 42, 43, 44, 45, 49, 53, 56, 57, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 99, 105, 108, 114], "behavior": [11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 33, 38, 39, 43, 44, 49], "3889": [11, 12, 13, 15, 16, 18, 19, 20, 21, 26, 33, 38, 39, 43, 44, 49], "might": [11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 26, 33, 38, 39, 43, 44, 49, 52, 67, 79, 100, 106], "unalign": 11, "mobile_ca": 11, "ref_ca": 11, "unaligned_rmsd": 11, "2f": [11, 26, 27, 30, 53], "84": [11, 30], "enough": [11, 12, 14, 37, 57], "reload": [11, 57], "uncom": [11, 14, 48], "aligned_to_first_fram": 11, "minorli": 11, "aligned_rmsd": 11, "81": [11, 30, 98, 106], "procedur": [11, 39, 102], "except": [11, 15, 37, 43, 44, 81, 82, 101, 103, 109, 113], "aligned_rmsd_3": 11, "73": [11, 16, 21, 30, 50, 87], "72": [11, 53], "1d": [12, 43], "diffusionmap": [12, 33], "pyplot": [12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 53, 57], "plt": [12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 53, 57], "mislead": 12, "think": [12, 16, 26, 53, 56], "fact": 12, "2d": [12, 13, 14, 43], "gain": 12, "diagon": 12, "plot": [12, 15, 16, 26, 27, 31, 33, 34, 36, 38, 39, 40, 43, 49, 53, 57, 105], "zero": [12, 16, 24, 30, 50, 60, 92], "along": [12, 15, 19, 20, 22, 30, 42, 44, 46, 49], "occup": [12, 14, 61, 66, 81, 82, 97, 105, 109], "revisit": 12, "earlier": [12, 16, 105, 108], "live": 12, "quantif": 12, "uncertainti": 12, "grossfield": 12, "et": [12, 26, 27, 28, 53], "al": [12, 26, 27, 28, 53], "distancematrix": 12, "necessarili": [12, 18, 44, 69], "anywher": 12, "begin": [12, 16, 24, 30, 114], "metric": [12, 13, 18, 19, 33, 42, 43, 44, 45, 46], "dist_matrix": 12, "n_frame": [12, 15, 16, 26, 30, 34, 37, 39, 53, 105], "102": [12, 42, 44, 45, 46, 98], "heatmap": [12, 24, 46], "heat": [12, 46, 48, 52], "plotli": 12, "holoview": 12, "imshow": [12, 23, 42, 44, 45, 48], "cmap": [12, 109], "viridi": 12, "xlabel": [12, 14, 15, 16, 18, 23, 24, 26, 27, 30, 31, 34, 36, 37, 38, 39, 40, 48, 53, 57], "ylabel": [12, 14, 15, 16, 19, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 36, 37, 38, 39, 40, 48, 57], "colorbar": [12, 23, 24, 42, 44, 45, 48], "label": [12, 13, 14, 15, 16, 22, 23, 24, 27, 37, 38, 42, 43, 44, 45, 46, 50, 99, 102], "aa": [12, 13, 14, 26, 30, 48, 107], "0x7fd0e5ddcc40": 12, "finicki": 12, "popul": [12, 16, 42, 105], "prmsd": 12, "frame_open": 12, "enumer": [12, 30, 42, 44], "ref_fram": [12, 13, 14], "3rd": 12, "column": [12, 13, 16, 18, 19, 20, 21, 26, 33, 34, 50, 53, 81, 82, 83, 84, 91, 93, 103, 105, 108], "0x7fd0e5c7a850": 12, "pd": [13, 15, 16, 18, 19, 20, 21, 26, 33, 34, 49, 53], "necessari": [13, 14, 16, 21, 26, 30, 50, 57, 102, 105, 106], "displai": [13, 26, 46, 50, 53, 103, 104], "three": [13, 14, 16, 19, 22, 23, 26, 34, 42, 44, 49, 50, 83, 105, 108, 109, 114], "lid": [13, 14, 22, 23, 50], "atp": [13, 14, 22, 23], "bind": [13, 14, 22, 23, 105], "nmp": [13, 14, 22, 23, 50], "amp": [13, 14, 22, 23], "move": [13, 14, 22, 40, 48, 53, 55, 101, 105, 108, 111, 112], "quantifi": [13, 14, 21, 23, 46, 104], "1ake": 13, "dissimilar": 13, "elementwis": 13, "sum": [13, 14, 15, 16, 18, 19, 21, 27, 55, 104, 108, 109], "sqrt": [13, 14, 15, 16], "frac": [13, 16, 19, 24, 27, 31, 109, 113], "sum_": [13, 36], "_i": [13, 14, 16, 31, 34, 36], "translat": [13, 38, 48, 50, 55, 105, 109, 112], "min_": [13, 46], "left": [13, 14, 31, 44, 106, 108], "cdot": [13, 31, 34, 60], "_": [13, 26, 31, 44, 48, 87], "frequent": [13, 14, 26, 57, 100], "overal": [13, 16, 19, 27, 108], "initi": [13, 14, 16, 19, 48, 108, 113], "suffer": 13, "degeneraci": 13, "With": [13, 34, 50, 103, 109], "side": [13, 14, 37, 104, 108], "chain": [13, 14, 37, 50, 81, 82, 83, 96, 104, 105, 109, 112], "investig": [13, 34], "scale": [13, 15, 19, 20, 33, 76, 104], "amid": 13, "w_i": 13, "weights_groupselect": 13, "keyword": [13, 16, 18, 19, 22, 23, 28, 30, 36, 37, 42, 43, 44, 53, 61, 62, 68, 81, 89, 93, 94, 96, 103, 105, 107, 114], "angstrom": [13, 20, 22, 23, 24, 30, 36, 40, 42, 48, 49, 50, 52, 63, 66, 79, 81, 82, 88, 106, 110, 112, 113], "amino": [13, 37, 104, 105], "acid": [13, 18, 19, 20, 21, 26, 27, 28, 37, 53, 104, 105], "isn": [13, 50], "center": [13, 15, 16, 23, 24, 26, 30, 36, 40, 50, 53, 54, 105, 106, 109, 112], "superimpos": 13, "823686867261616": 13, "groupselect": [13, 53], "60": [13, 36, 40, 46, 50, 57, 81, 82, 110], "121": [13, 39, 46, 50, 52], "122": [13, 14, 22, 23, 50, 82, 98], "159": [13, 14, 22, 23, 50, 98], "59": [13, 14, 16, 22, 23, 50, 57], "0x7f2e830164f0": 13, "row": [13, 16, 26, 43, 45, 53], "guess": [13, 28, 50, 53, 57, 61, 65, 67, 81, 92, 97, 103, 105, 109], "third": [13, 53], "few": [13, 15, 34, 48, 100, 108, 112], "easili": [13, 15, 16, 24, 30, 34, 39, 43, 53, 55, 99, 101, 109], "turn": [13, 16, 18, 33, 34, 39, 46, 53, 57, 106, 108], "datafram": [13, 16, 18, 19, 20, 21, 26, 33, 34, 53], "df": [13, 16, 26, 33, 34, 46], "000000": [13, 16, 18, 19, 20], "834344e": [13, 53], "07": [13, 38, 50, 53, 104], "921486e": 13, "08": [13, 26, 50, 53, 57], "197000e": 13, "276497e": 13, "636592e": [13, 53], "01": [13, 30, 36, 53, 104], "550181e": 13, "871915e": 13, "745572e": 13, "419340e": [13, 53], "754418e": 13, "940994e": 13, "270191e": 13, "743983e": [13, 53], "739184e": 13, "010261e": 13, "00": [13, 30, 36, 42, 53, 78, 82, 98, 109], "795031e": 13, "588600e": [13, 53], "318859e": 13, "168397e": 13, "612989e": 13, "93": [13, 16, 27, 30, 104], "999992": [13, 16], "817898e": 13, "504430e": 13, "143376e": 13, "029266e": 13, "94": [13, 16, 98], "804211e": 13, "480681e": 13, "141134e": 13, "029879e": 13, "95": [13, 16, 27], "807987e": 13, "508946e": 13, "137593e": 13, "031958e": 13, "96": [13, 16, 27, 30, 34, 50, 104], "999991": [13, 16], "821205e": 13, "498081e": 13, "139156e": 13, "037768e": 13, "97": [13, 16, 27, 30, 104], "820322e": 13, "507119e": 13, "138474e": 13, "036821e": 13, "ax": [13, 16, 23, 24, 33, 37, 38, 39, 42, 44, 45, 46, 48, 49, 53, 109], "set_ylabel": [13, 16, 23, 24, 38, 43, 44], "argument": [13, 15, 16, 18, 19, 27, 30, 33, 37, 42, 44, 48, 50, 53, 61, 66, 67, 81, 88, 89, 94, 95, 96, 103, 105, 106, 108, 109, 112, 114], "incorpor": 13, "0x7f2e80561610": 13, "former": [13, 52, 108], "latter": [13, 45, 108], "none": [13, 15, 16, 26, 28, 30, 34, 37, 46, 50, 52, 57, 92, 98, 105, 109, 114], "unweight": [13, 15, 16], "r_mass": 13, "0x7f2e804833d0": 13, "df_mass": 13, "ax_mass": 13, "previou": [13, 19, 30, 105], "graph": [13, 15], "r_charg": 13, "0x7f2e80483490": 13, "doesn": [13, 50, 92, 96, 98], "potenti": [13, 19, 52, 57, 79, 87, 102, 105], "infer": [13, 19, 105], "wherea": [13, 14, 33, 38, 39, 53, 103], "seem": [13, 44], "convent": [13, 15, 22, 23, 60, 66, 67, 102, 105], "shown": [13, 16, 30, 34, 37, 48, 50, 53, 89, 113], "df_charg": 13, "ax_charg": 13, "mdanalysisdata": [14, 15, 100], "equilibrium": [14, 52], "sb17": [14, 104], "wonder": 14, "flexibl": [14, 15, 16, 23, 30, 59, 63, 85, 99, 104, 105], "langl": [14, 27, 31, 36], "rangl": [14, 27, 31, 36], "rho_i": 14, "diverg": [14, 42, 43, 44, 45], "rsmf": 14, "reveal": 14, "area": [14, 26, 37, 42, 108], "carri": [14, 48], "averagestructur": 14, "fly": [14, 111, 114], "presum": 14, "aligned_traj": 14, "underflow": 14, "overflow": [14, 105], "wel62": [14, 104], "c_alpha": 14, "inde": [14, 19, 44], "axvspan": [14, 22], "zorder": [14, 22], "color": [14, 22, 30, 37, 48], "orang": [14, 22], "green": [14, 15, 22, 102, 108], "legend": [14, 15, 16, 19, 20, 22, 27, 30, 37, 38, 43, 44], "0x13a476d30": 14, "identifi": [14, 26, 28, 42, 81, 82, 92], "commonli": [14, 50, 78, 98], "temperatur": [14, 26, 52, 57, 81, 82], "known": [14, 102], "vmd": [14, 34, 39, 53, 60, 67, 81, 84, 93, 95, 96, 105], "tempfactor": [14, 61, 65, 81, 82, 97, 105, 109], "add_topologyattr": [14, 50, 109, 114], "empti": [14, 50, 83, 105, 106, 109, 114], "r_valu": 14, "rainbow": 14, "scheme": [14, 15, 42, 44, 102], "purpl": 14, "red": [14, 108], "update_represent": 14, "color_schem": [14, 50], "bfactor": [14, 66, 87, 105, 106], "100th": 14, "highest": [14, 34, 40, 48, 50], "icod": [14, 61, 81, 82, 97, 106, 109], "rmsf_tempfactor": 14, "benchmark": [14, 104, 105], "june": [14, 27, 33, 104], "2017": [14, 52, 104], "00002": [14, 104], "molecular_dynamics_trajectory_for_benchmarking_mdanalysi": [14, 104], "5108170": [14, 104], "6084": [14, 104], "m9": [14, 104], "v1": [14, 104], "welford": [14, 104], "technometr": [14, 104], "419": [14, 30, 98, 104], "420": [14, 98, 104], "august": [14, 104], "1962": [14, 104], "amstat": [14, 104], "tandfonlin": [14, 104], "ab": [14, 34, 36, 40, 104, 106], "1080": [14, 39, 104], "00401706": [14, 104], "10490022": [14, 104], "exascal": 15, "barrier": 15, "increasingli": 15, "volum": [15, 36, 40, 49, 52, 57], "md": [15, 53, 102, 105, 110, 113], "whilst": [15, 102, 105], "framework": [15, 99, 108], "task": [15, 48, 53, 99, 108, 111], "plai": 15, "pivot": 15, "role": 15, "acceler": 15, "solut": [15, 34, 79], "illustr": [15, 28, 33, 48], "en": [15, 30, 57, 104], "readthedoc": 15, "adk_equilibrium": 15, "n_job": 15, "thread": 15, "cpu_count": 15, "power": [15, 53, 98], "pc": [15, 34, 44, 70], "laptop": 15, "desktop": 15, "phosopho": 15, "transferas": 15, "4187": 15, "insid": [15, 53, 96, 101, 108], "implicitli": 15, "explicitli": [15, 30, 53, 61, 66, 88, 101, 114], "radgyr": [15, 16, 111], "total_mass": [15, 16, 53, 109], "center_of_mass": [15, 16, 23, 24, 53, 55, 60, 108, 109], "ri_sq": [15, 16], "sq": [15, 16], "sq_x": [15, 16], "sq_y": [15, 16], "sq_z": [15, 16], "sq_r": [15, 16], "weight": [15, 16, 26, 27, 30, 34, 38, 45, 46, 48, 65, 112], "rog_sq": [15, 16], "append": [15, 21, 26, 27, 50, 52, 53, 96, 98, 102], "asarrai": 15, "col": [15, 16, 34], "\u00e5": [15, 16, 19, 26, 28, 38, 48, 53, 67, 83, 113], "frame_index": 15, "appropri": [15, 19, 36, 57, 68, 96, 103, 106, 108], "parallelis": 15, "radgyr_per_fram": 15, "pool": 15, "worker": [15, 105], "gather": [15, 30], "functool": [15, 112], "suppli": [15, 61, 68], "etc": [15, 50, 61, 87, 92, 102, 105, 114], "job": [15, 42, 44], "worker_pool": 15, "run_per_fram": 15, "frame_valu": 15, "arang": [15, 23, 37, 42, 44, 45], "analyt": 15, "util": [15, 93, 108], "hpc": 15, "schedul": [15, 105], "synchron": 15, "wrap": [15, 48, 105, 109, 112], "delai": 15, "mimic": 15, "loop": [15, 16, 55, 108, 111], "examin": [15, 33, 50], "queue": 15, "wait": [15, 102], "submiss": 15, "comar": 15, "multiprocss": 15, "downsid": 15, "focus": [15, 99], "multicor": 15, "hard": [15, 79, 106], "multimachin": 15, "config": [15, 58, 59, 61, 97, 109], "0x7f8bf93611c0": 15, "slow": [15, 79, 102], "down": [15, 100, 106], "diagnost": 15, "dashboard": 15, "valuabl": 15, "client": 15, "n_worker": 15, "tcp": 15, "127": 15, "35433": 15, "8787": 15, "gb": [15, 57], "job_list": 15, "input": [15, 23, 48, 58, 59, 61, 63, 68, 87, 97, 105, 109, 112, 114], "associ": [15, 33, 34, 38, 44, 50, 52, 53, 57, 98, 104, 105, 109, 111], "timestamp": 15, "awar": [15, 108], "accordingli": [15, 102, 111], "though": [15, 18, 48, 68], "stream": 15, "aforement": 15, "pickl": [15, 26, 105], "besid": 15, "signific": [15, 22, 83, 100, 105, 114], "amount": [15, 102, 108], "overhead": 15, "comprehens": [15, 98], "thousand": 15, "sfpg": [15, 104], "cc": [15, 34], "BY": 15, "syntax": [15, 52, 98, 108], "decor": [15, 108], "analyze_block": 15, "blockslic": 15, "kwarg": [15, 18, 19, 57, 105], "stop": [15, 16, 26, 33, 42, 53, 105, 111], "n_block": 15, "evenli": 15, "divid": [15, 26, 33, 43, 50], "balanc": 15, "realist": 15, "n_frames_per_block": 15, "2093": 15, "4000": 15, "analyz": [15, 66], "pipelin": [15, 105, 108], "conveni": [15, 16, 30, 31, 37, 46, 53, 57], "num_cor": 15, "rog_1": 15, "rog_2": 15, "rog_3": 15, "rog_4": 15, "analysis_ensembl": 15, "run_analysi": 15, "pie": [15, 114], "similiar": 15, "run_anlaysi": 15, "results_ensembl": 15, "result_1": 15, "pmda": [15, 104], "consolid": 15, "shuji": [15, 104], "fan": [15, 104], "ioanni": [15, 33, 104], "paraskevako": [15, 104], "michael": [15, 37, 104], "gecht": [15, 104], "chri": 15, "callowai": 15, "lippa": 15, "dillon": 15, "niederhut": 15, "shupe": 15, "18th": [15, 104], "134": [15, 33, 104], "142": [15, 27, 104], "2019": [15, 71, 87, 104], "7ddc1dd1": [15, 104], "013": [15, 82, 104], "involv": [16, 26, 28, 37, 52, 53, 105, 111], "analysis_class": 16, "compact": 16, "r_g": 16, "sum_i": [16, 109], "m_i": [16, 109], "r_": [16, 26], "radii": [16, 30, 60, 61, 83, 97, 109, 114], "recomput": 16, "total": [16, 26, 34, 36, 52, 57, 109], "u2": [16, 22, 38, 42, 44, 45, 46, 55, 57, 114], "rog": 16, "0x7f901a31bca0": 16, "10th": [16, 106], "8th": 16, "until": [16, 42, 53, 111], "80th": 16, "slice": [16, 53, 57, 103, 106, 111], "rog_10": 16, "radiusofgyr": 16, "rog_u1": 16, "wrapperclass": 16, "0x7f9000500820": 16, "reus": [16, 108], "rog_u2": 16, "0x7f9000474df0": 16, "templat": 16, "multifram": 16, "meter": 16, "subclass": [16, 42, 44, 108], "behaviour": [16, 28, 42, 45, 61, 71, 98, 105, 106, 114], "initialis": [16, 42, 44, 49, 53, 57], "_prepar": 16, "_conclud": [16, 105], "finalis": [16, 102], "_verbos": 16, "_trajectori": 16, "_t": 16, "_frame_index": 16, "absolut": [16, 26, 101, 106, 108, 109], "radiusofgyration2": 16, "super": 16, "placehold": [16, 50, 92], "fulli": [16, 30, 100, 108], "rog_bas": 16, "26549552": 16, "85342131": 16, "37359575": 16, "29185734": 16, "669018": [16, 53], "679625": 16, "749343": 16, "349043": 16, "673217": [16, 53], "640025": 16, "760545": 16, "382960": 16, "731454": [16, 53], "696454": 16, "801342": 16, "429350": 16, "722283": [16, 53], "677194": 16, "780732": 16, "444711": 16, "743961": [16, 53], "646981": 16, "814553": 16, "489046": 16, "562034": 16, "421683": 16, "539112": 16, "653968": 16, "560575": 16, "451335": 16, "508649": 16, "656678": 16, "550571": 16, "445914": 16, "500640": 16, "646130": 16, "568381": 16, "443243": 16, "507396": 16, "681294": 16, "591575": 16, "442750": 16, "537926": 16, "704494": 16, "subset": [16, 28, 52, 82, 111], "rog_base_10": 16, "__main__": 16, "0x7f90006ca9d0": 16, "999999": 16, "852127": 16, "584163": 16, "001589": 16, "614469": 16, "999998": 16, "019587": 16, "544784": 16, "163276": 16, "878262": 16, "257429": 16, "514341": 16, "487021": 16, "137873": 16, "999997": 16, "542565": 16, "522147": 16, "747461": 16, "530339": 16, "871241": 16, "482385": 16, "088865": 16, "977444": 16, "45": [16, 49, 50, 57, 98], "999996": 16, "182243": 16, "533023": 16, "451285": 16, "290153": 16, "52": [16, 57, 98, 103], "999995": 16, "496493": 16, "771949": 16, "667003": 16, "603098": 16, "839346": 16, "037335": 16, "900327": 16, "942533": 16, "66": [16, 30, 57, 81, 82], "999994": 16, "064333": 16, "061491": 16, "114195": 16, "222884": 16, "999993": 16, "276639": 16, "161863": 16, "298539": 16, "444213": 16, "ax_10": 16, "benefit": [16, 99], "optimis": 16, "those": [16, 19, 26, 30, 53, 57, 67, 87, 98, 102, 108], "pre": [18, 48, 57, 102], "introduct": [18, 20, 21, 33, 34, 43, 53, 99, 104, 105, 112], "nh": [18, 19, 21], "nz": [18, 19, 21, 27], "ly": [18, 19, 21, 22, 27, 28, 37, 53, 55, 106, 107], "oe": [18, 19, 21], "od": [18, 19, 21], "asp": [18, 19, 21, 27, 53, 107], "glu": [18, 19, 21, 27, 53, 106, 107], "definit": [18, 21, 31, 81, 82, 95], "real": [18, 21, 66, 68, 76, 81, 82, 83], "sel_bas": [18, 19, 21], "sel_acid": [18, 19, 21], "r0": [18, 19], "respect": [18, 26, 30, 37, 46, 53, 109], "radiu": [18, 20, 21, 30, 36, 40, 53, 83, 87, 106, 109, 114], "greater": [18, 26, 27, 33, 106], "min_radiu": [18, 30], "fraction_contacts_between": 18, "is_in_contact": 18, "size": [18, 26, 36, 38, 43, 46, 49, 50, 53, 55, 71, 89, 99, 102, 111], "custom": [18, 50, 66, 98, 99, 105, 109], "refgroup": [18, 19], "post": [18, 26, 48, 55, 100, 105, 112], "ca_df": [18, 21], "988764": 18, "943820": 18, "axessubplot": [18, 30, 31, 37], "lili": [19, 26, 39], "pydev": [19, 26, 39], "oppos": 19, "unfold": 19, "hard_cut_q": 19, "radius_cut_q": [19, 20], "fkdd07": [19, 20, 104], "soft_cut_q": 19, "bhe13": [19, 20, 104], "pseudo": 19, "salt": [19, 21], "bridg": [19, 21], "studi": 19, "term": [19, 57, 80, 85, 87, 99, 106], "secondari": [19, 21], "tertiari": [19, 21], "hard_cut": 19, "equal": [19, 24, 42, 43, 108], "ca1": [19, 22], "ca1_df": 19, "492754": 19, "449275": 19, "507246": 19, "463768": 19, "multipli": [19, 26, 86, 113], "matric": [19, 24, 45], "initial_contact": 19, "70": [19, 53, 57, 82, 98, 108, 110], "44": [19, 20, 30, 48, 49, 57, 103, 104], "n_ref": 19, "69": [19, 21, 57, 98], "n_contact": [19, 21], "contat": 19, "drop": [19, 43, 100, 105], "rearrang": [19, 21], "never": [19, 101, 108, 109], "radius_cut": 19, "\u00e5ngstr\u00f6m": [19, 38, 53, 68, 79, 113], "No": [19, 21, 28, 101, 108, 109], "ca2": [19, 22], "decreas": [19, 33, 44], "gradual": [19, 105], "75": [19, 36, 40, 49], "almost": [19, 53, 109, 114], "half": [19, 37], "closer": [19, 44], "moreov": 19, "ca2_df": 19, "tupl": [19, 30, 50, 98, 103, 105, 109], "unchang": [19, 57, 105], "acidic_2": 19, "basic_2": 19, "soft_cut": 19, "q": [19, 46, 82, 83, 96], "r_0": 19, "beta": [19, 22, 39, 50, 55, 67, 81, 82, 102], "lambda": [19, 89], "control": [19, 39, 42, 44, 48, 110], "toler": 19, "ca3": 19, "lambda_const": 19, "ca3_df": 19, "999094": 19, "719242": 19, "984928": 19, "767501": 19, "984544": 19, "788027": 19, "970184": 19, "829219": 19, "980425": 19, "833500": 19, "count": [19, 21, 26, 27, 36, 40, 96, 105], "rise": [19, 39], "se": 19, "characteris": [19, 20, 38, 39], "hummer": [19, 20, 104], "eaton": [19, 20, 104], "mechan": [19, 20, 104], "nation": [19, 20, 104], "academi": [19, 20, 104], "110": [19, 20, 34, 87, 104], "17874": [19, 20, 104], "17879": [19, 20, 104], "octob": [19, 20, 34, 42, 43, 44, 45, 46, 104], "2013": [19, 20, 30, 67, 104], "00259": [19, 20, 104], "pna": [19, 20, 104], "1073": [19, 20, 104], "1311599110": [19, 20, 104], "joel": [19, 20, 104], "franklin": [19, 20, 104], "patric": [19, 20, 104], "koehl": [19, 20, 104], "sebastian": [19, 20, 104], "doniach": [19, 20, 104], "marc": [19, 20, 104], "delaru": [19, 20, 104], "minactionpath": [19, 20, 104], "maximum": [19, 20, 27, 30, 45, 66, 104], "likelihood": [19, 20, 45, 104], "energi": [19, 20, 52, 57, 104], "landscap": [19, 20, 104], "nucleic": [19, 20, 104, 106], "suppl_2": [19, 20, 104], "w477": [19, 20, 104], "w482": [19, 20, 104], "2007": [19, 20, 38, 104], "00083": [19, 20, 104], "nar": [19, 20, 104], "lookup": [19, 20, 104], "gkm342": [19, 20, 104], "q1q2": 20, "q1q2_df": 20, "946494": 20, "980926": 20, "949262": 20, "973660": 20, "952952": 20, "972752": 20, "951107": 20, "970027": 20, "948339": 20, "relat": [21, 30, 100, 105], "overli": 21, "simplist": 21, "group_a": 21, "group_b": 21, "contacts_within_cutoff": 21, "dist": [21, 22, 102], "distance_arrai": [21, 23], "contact_matrix": 21, "77": [21, 81], "85": [21, 108], "pdb_small": [22, 23, 24, 45, 46, 50, 108], "pdb_close": 22, "u1": [22, 38, 42, 44, 45, 46, 109, 114], "offset": [22, 89, 94, 105], "comparison": [22, 42, 43, 44, 45, 104, 105, 106], "resids1": 22, "resids2": 22, "highlight": [22, 38, 57, 102, 108], "0x7f06d2a3b7c0": 22, "unitcel": [22, 67], "box": [22, 23, 26, 40, 48, 49, 50, 52, 54, 57, 67, 71, 88, 105, 111, 112, 114], "lx": [22, 55], "lz": [22, 55], "gamma": [22, 39, 50, 55, 67, 81, 82], "resids1_box": 22, "resids2_box": 22, "dist_box": 22, "0x7f06d09bc700": 22, "lid_ca": 23, "nmp_ca": 23, "n_lid": 23, "n_nmp": 23, "dist_arr": 23, "fig": [23, 24, 33, 45, 46, 48], "subplot": [23, 24, 33, 38, 42, 43, 44, 45, 48], "im": [23, 24, 45, 48], "upper": [23, 24, 26, 30, 42, 44, 45], "tick_interv": 23, "set_ytick": 23, "set_xtick": [23, 42, 44], "set_yticklabel": 23, "set_xticklabel": [23, 42, 44], "figur": [23, 24, 37, 44, 46, 48, 50, 61], "titl": [23, 24, 26, 27, 40, 42, 44, 45, 53, 81], "cbar": [23, 24, 45, 48], "lid_com": 23, "compound": [23, 24, 48, 55, 81, 87, 105, 108, 109, 112], "nmp_com": 23, "res_dist": [23, 24], "fig2": [23, 24, 42, 44], "ax2": [23, 24], "im2": [23, 24], "cbar2": [23, 24, 42, 44], "n_ca": 24, "self_distance_arrai": 24, "flat": [24, 30, 44, 48], "flatten": [24, 30, 34, 48], "triangular": 24, "self_dist": 24, "22791": 24, "sq_dist_arr": 24, "triu": 24, "triu_indices_from": 24, "pcolor": 24, "rectangular": 24, "grid": [24, 48, 50], "set_aspect": 24, "res_com": 24, "n_re": 24, "sq_dist_r": 24, "pretti": [24, 98], "hydrogenbondanaysi": [26, 27, 28], "smith": [26, 27, 28], "set_printopt": 26, "linewidth": 26, "waterpsf": [26, 49], "waterdcd": [26, 49], "hydrogenbond": [26, 27, 28, 105], "hydrogenbondanalysi": [26, 27, 28, 105], "prmtop": [26, 59, 61, 88, 97, 109], "guarante": [26, 83], "identif": [26, 34, 104], "donor": [26, 27, 28, 84, 105], "criteria": 26, "acceptor": [26, 27, 28, 84], "da": [26, 27, 107], "theta_": [26, 31], "dha": [26, 27], "150": [26, 28, 82], "involve": 26, "acceptors_sel": [26, 27, 28], "hydrogens_sel": [26, 27, 28], "donor_sel": 26, "oh2": [26, 28], "h1": [26, 28, 50, 52, 78], "oxygen": [26, 48, 50, 106], "charmm": [26, 58, 59, 61, 68, 81, 83, 88, 96, 97, 103, 106, 107], "tip3p": [26, 113], "model": [26, 27, 30, 31, 53, 61, 77, 80, 81, 82, 97, 104, 109], "field": [26, 30, 53, 60, 66, 82, 83, 87, 93, 106, 107, 109], "hbond": [26, 27, 28, 52, 105], "donors_sel": 26, "d_a_cutoff": 26, "d_h_a_angle_cutoff": 26, "update_select": [26, 27], "boost": [26, 100], "hbond_analysi": [26, 27, 28, 105], "0x14115fdf0": 26, "n_": [26, 34, 36], "textrm": 26, "follw": 26, "donor_index": 26, "hydrogen_index": 26, "acceptor_index": 26, "da_dist": 26, "dha_angl": 26, "82744082": 26, "48955173": 26, "83": [26, 87], "float64": [26, 109], "cast": 26, "integ": [26, 66, 72, 81, 82, 83, 102, 105, 108], "first_hbond": 26, "donor_ix": 26, "hydrogen_ix": 26, "acceptor_ix": 26, "astyp": 26, "count_by_tim": 26, "lw": [26, 27, 48], "hydrogon": 26, "bold": [26, 27], "hb": [26, 36], "count_by_typ": 26, "tip3": [26, 28], "ot": 26, "u21": 26, "donor_resnam": 26, "donor_typ": 26, "n_donor": 26, "mean_count": 26, "forcefield": 26, "due": [26, 34, 44, 71, 83, 102, 105], "count_by_id": [26, 27], "four": [26, 39, 44, 45, 103, 109], "descend": 26, "observ": 26, "most_common": 26, "wat": [26, 30], "ht": 26, "histogram": [26, 30, 48, 105], "bin_edg": 26, "linspac": [26, 27, 49], "51": [26, 30, 53, 57, 98, 103], "bin_cent": 26, "faster": [26, 79, 100], "fill_valu": 26, "zpo": 26, "hist": [26, 38], "funcion": 26, "height": 26, "wish": [26, 28, 52, 55, 79, 111, 114], "xy": [26, 48, 57], "mean_xy_area": 26, "prod": 26, "lipid": [26, 27, 28, 106], "bilay": 26, "phosphor": 26, "leaflet": 26, "headgroup_atom": 26, "interface_zpo": 26, "hydrogenbondsanalysi": 26, "pkl": 26, "wb": 26, "dump": [26, 58, 59, 61, 97, 103, 105], "rb": 26, "npy": 26, "to_csv": 26, "csv": 26, "paul": [26, 27, 28, 37, 104], "robert": [26, 27, 28, 52], "ziolek": [26, 27, 28], "elena": [26, 27, 28, 42, 43, 44, 45, 104], "gazzarrini": [26, 27, 28], "dylan": [26, 27, 28], "owen": [26, 27, 28], "christian": [26, 27, 28], "d": [26, 27, 28, 45, 46, 48, 52, 53, 60, 104], "lorenz": [26, 27, 28], "On": [26, 27, 28, 48, 50, 55, 57, 87, 102, 108], "hyaluron": [26, 27, 28], "synovi": [26, 27, 28], "fluid": [26, 27, 28], "phy": [26, 27, 28], "chem": [26, 27, 28, 45, 52, 53, 78], "9845": [26, 27, 28], "9857": [26, 27, 28], "dx": [26, 27, 28, 46, 48, 104], "1039": [26, 27, 28, 98], "c9cp01532a": [26, 27, 28], "intramolecular": 27, "auto": [27, 42, 43, 44], "0x137309280": 27, "autocorrel": [27, 31], "presenc": 27, "tau": 27, "bigg": 27, "h_": 27, "ij": [27, 48], "t_0": 27, "period": [27, 48, 87, 88, 105, 106, 112], "statist": [27, 34, 104, 108], "carbonn": 27, "2015": [27, 42, 43, 44, 45, 46, 104], "consecut": 27, "window_step": 27, "tau_max": 27, "tau_fram": 27, "hbond_lifetim": 27, "tau_tim": 27, "dt": [27, 33, 34, 57, 61, 81, 88, 95, 105, 107, 114], "obtain": [27, 48, 50, 57, 83, 104, 105, 113], "biexponenti": 27, "curv": [27, 34], "exp": [27, 31], "tau_1": 27, "tau_2": 27, "timescal": 27, "fit_biexponenti": 27, "tau_timeseri": 27, "ac_timeseri": 27, "curve_fit": 27, "tau1": 27, "tau2": 27, "param": 27, "params_covari": 27, "fit_t": 27, "1000": [27, 44, 50, 105, 106, 113, 114], "fit_ac": 27, "decai": [27, 31], "time_const": 27, "maxium": 27, "times_tim": 27, "loc": 27, "02": [27, 36, 104], "preval": 27, "0x1376ccc70": 27, "tcount": 27, "124": 27, "nh2": [27, 28], "hh22": [27, 28], "143": 27, "oe1": 27, "nh1": [27, 28, 83], "hh11": [27, 28, 83], "104": [27, 50], "od1": 27, "206": 27, "ne": [27, 28], "he": [27, 28, 45], "210": [27, 37, 53, 82], "71": [27, 30, 82, 98], "76": [27, 81, 82], "200": [27, 42, 49, 52, 57, 102, 114], "hz2": [27, 28], "208": 27, "od2": 27, "211": 27, "hz3": [27, 28], "204": [27, 98], "92": 27, "thr": [27, 36, 37, 53, 105, 107], "199": 27, "og1": [27, 36, 105], "hg1": [27, 36, 53], "197": 27, "tyr": [27, 107], "133": [27, 98], "oh": 27, "hh": 27, "146": [27, 57], "193": 27, "108": 27, "gly": [27, 37, 53, 96, 98, 106, 107], "ot2": [27, 53], "simplest": [27, 28], "d_ix": 27, "h_ix": 27, "a_ix": 27, "tmp_hbond": 27, "hbl": 27, "ncol": 27, "poor": [27, 34], "smoothli": 27, "toward": [27, 40, 110], "seen": [27, 34, 42, 44, 45, 46, 53, 105], "paola": 27, "multiscal": 27, "polyamid": [27, 31], "224907": 27, "1063": [27, 33, 34, 104], "4922445": 27, "intramolcular": 28, "saw": 28, "basisc": 28, "accetptor": 28, "0x7fce51309190": 28, "hi": [28, 53, 105, 107], "751": [28, 30, 104], "userwarn": [28, 37], "o": [28, 30, 31, 36, 45, 50, 52, 53, 98, 104, 106, 107, 108], "0x7fce50983790": 28, "hydrogen_sel": 28, "hh12": 28, "hh21": 28, "hn": [28, 53], "hz1": 28, "slightli": 28, "water": [28, 36, 40, 49, 52, 55, 98, 105, 106, 112, 113], "protein_hydrogens_sel": 28, "protein_acceptors_sel": 28, "water_hydrogens_sel": 28, "water_acceptors_sel": 28, "0x7fce5098a250": 28, "0x7fce5096fd60": 28, "wrapper": [30, 112], "sgw93": [30, 104], "snw": [30, 104], "pdb_hole": 30, "binari": [30, 57, 58, 59, 61, 79, 85, 87, 88, 90, 100], "helper": [30, 44], "seri": [30, 34, 57, 104, 105], "sphere": [30, 53, 106], "overlap": [30, 36, 50, 103], "van": [30, 33, 60, 104, 109, 114], "der": [30, 33, 60, 104, 109, 114], "waal": [30, 60, 109, 114], "tip": 30, "hoh": 30, "ignore_residu": 30, "wildcard": [30, 53, 106], "similarli": [30, 36, 37, 48, 50, 98, 109], "holeanalysi": 30, "prefer": [30, 42, 100, 108], "anim": 30, "cpoint": 30, "cvect": 30, "resolut": [30, 106], "gramicidin": [30, 104], "channel": [30, 48, 99, 104], "random_se": 30, "reproduc": 30, "advis": [30, 105], "outfil": [30, 108], "hole1": 30, "sphpdb_file": 30, "sph": 30, "vdwradii_fil": 30, "31415": 30, "readabl": [30, 87], "simple2": 30, "rad": [30, 111, 113], "log": [30, 42, 44, 101, 105], "tmp": 30, "pdb_name": 30, "fortran77": 30, "symlink": [30, 105], "shorten": 30, "keep_fil": 30, "sphpdb": 30, "profiles1": 30, "425": [30, 34, 104], "recarrai": 30, "rxncoord": 30, "rxn_coord": 30, "cen_line_d": 30, "centr": 30, "proce": 30, "pore_length": 30, "42": [30, 48, 49, 57, 103, 106], "create_vmd_surfac": 30, "sph_process": 30, "tk": 30, "consol": 30, "drawn": [30, 44, 107, 111], "customis": 30, "plane": [30, 39, 48, 60], "multipdb_hol": 30, "center_of_geometri": [30, 50, 53, 55, 109], "0x7f1a146af610": 30, "fourth": [30, 111], "truncat": [30, 89], "91": 30, "63": [30, 40, 52, 57], "65": [30, 57, 104], "64": [30, 57], "05": [30, 104], "58": [30, 57, 87], "87": 30, "57": [30, 52, 57, 103], "62": [30, 40, 57, 103], "56": [30, 53, 57, 103], "48": [30, 49, 52, 57, 81, 82, 98], "74": [30, 98, 103], "54": [30, 53, 57, 81, 82, 113], "dict_kei": [30, 39, 57], "3967": 30, "bin_radii": 30, "edg": [30, 105], "histogram_radii": 30, "aggreg": 30, "analog": [30, 53], "plot_mean_profil": 30, "n_std": 30, "midpoint": [30, 48], "zeta": 30, "min_radii": 30, "3f": [30, 31, 34, 39], "237": [30, 82], "567": 30, "533": 30, "243": 30, "198": 30, "296": 30, "438": 30, "511": 30, "879": 30, "997": 30, "differenti": 30, "plot3d": 30, "3d": [30, 43, 44, 53], "axes3dsubplot": 30, "zlabel": 30, "r_max": 30, "chunk": [30, 36], "blue": [30, 37, 48, 50, 72], "fill_alpha": 30, "opac": [30, 48], "sfsb14": [30, 104], "over_order_paramet": 30, "rmsd_valu": 30, "88": 30, "order_paramet": 30, "care": [30, 40, 83], "repeat": [30, 50], "op_profil": 30, "item": [30, 39, 52, 108], "000": [30, 52, 78], "543": [30, 82], "221": 30, "389": 30, "442": 30, "399": [30, 98], "663": 30, "379": 30, "443": 30, "884": 30, "391": 30, "149": [30, 34, 104], "205": 30, "139": 30, "plot_order_paramet": 30, "singular": [30, 38, 43, 44, 109], "min": [30, 50], "vlue": 30, "plot3d_order_paramet": 30, "soon": [30, 102], "tmp_file": 30, "hole000": 30, "hole001": 30, "hole002": 30, "hole003": 30, "hole004": 30, "hole005": 30, "hole006": 30, "hole007": 30, "hole008": 30, "hole009": 30, "hole010": 30, "delete_temporary_fil": 30, "temporari": [30, 105], "ha2": [30, 53, 98], "0962": 30, "smart": [30, 104, 105], "goodfellow": [30, 104], "wallac": [30, 104], "biophys": [30, 104], "2455": [30, 104], "2460": [30, 104], "1993": [30, 34, 104], "00522": [30, 104], "ncbi": [30, 104], "nlm": [30, 104], "nih": [30, 104], "gov": [30, 104], "pmc": [30, 104], "pmc1225986": [30, 104], "s0006": [30, 104], "3495": [30, 104], "81293": [30, 104], "neduvelil": [30, 104], "wang": [30, 52, 104], "sansom": [30, 104], "ion": [30, 42, 44, 104, 105], "354": [30, 104], "360": [30, 104], "376": [30, 104], "1996": [30, 104], "00935": [30, 104], "s0263": [30, 104], "7855": [30, 104], "00009": [30, 104], "luka": [30, 104], "stelzl": [30, 104], "philip": [30, 38, 104], "fowler": [30, 104], "gate": [30, 104], "occlud": [30, 104], "intermedi": [30, 104], "transport": [30, 104], "laci": [30, 104], "426": [30, 82, 104], "735": [30, 104], "februari": [30, 104], "2014": [30, 34, 104], "00000": [30, 104], "asu": [30, 104], "pure": [30, 31, 87, 104], "024": [30, 82, 104], "trz_psf": 31, "trz": [31, 58, 59, 61, 105], "melt": [31, 34], "nitrogen": [31, 98, 105, 106], "ch": 31, "spatial": [31, 46], "arrang": [31, 46], "sort_backbon": 31, "sorted_bb": 31, "bb": [31, 53], "decorrel": 31, "co": [31, 67], "a_i": [31, 46], "a_": 31, "exponenti": 31, "yield": [31, 34, 105], "l_p": 31, "l_b": 31, "approx": [31, 108], "persistencelength": 31, "plen": 31, "0x7f4b7ddfd160": 31, "lb": 31, "lp": 31, "179": 31, "917": [31, 106], "cl06": [33, 104], "dlphhvdw08": [33, 104], "rzmc11": [33, 104], "fpkd11": [33, 104], "dmap": 33, "epsilon": [33, 109], "0x7f10a66864c0": 33, "_eigenvector": 33, "10101525": 33, "domin": [33, 38], "eigenvalu": [33, 34, 38], "spectral": 33, "gap": [33, 103], "line2d": [33, 49, 57], "0x7f10a3e2be80": 33, "five": [33, 34, 53, 93], "expon": 33, "embed": [33, 44], "mode2": 33, "mode3": 33, "mode4": 33, "mode5": 33, "mode6": 33, "094795": 33, "075950": 33, "054708": 33, "035526": 33, "022757": 33, "166068": 33, "132017": 33, "094409": 33, "060914": 33, "038667": 33, "199960": 33, "154475": 33, "107425": 33, "067632": 33, "041445": 33, "228815": 33, "168694": 33, "111460": 33, "067112": 33, "038469": 33, "250384": 33, "171873": 33, "103407": 33, "057143": 33, "028398": 33, "pairgrid": [33, 34], "quickest": [33, 34], "easiest": [33, 34, 53], "dot": 33, "kinet": [33, 52, 57], "pathwai": [33, 46, 104], "smaller": [33, 50, 98], "sn": [33, 34], "hue": [33, 34], "palett": [33, 34], "color_palett": [33, 34], "oranges_d": [33, 34], "n_color": [33, 34], "marker": [33, 34, 37], "axisgrid": 33, "0x7f10a5e45370": 33, "ronald": [33, 104], "coifman": [33, 104], "st\u00e9phane": [33, 104], "lafon": [33, 104], "2006": [33, 104], "02271": [33, 104], "acha": [33, 104], "04": [33, 104], "006": [33, 82, 104], "de": [33, 37, 104], "la": [33, 104], "port": [33, 104], "herbst": [33, 104], "hereman": [33, 104], "walt": [33, 104], "19th": [33, 104], "symposium": [33, 104], "pattern": [33, 104, 106, 108], "recognit": [33, 104], "south": [33, 104], "africa": [33, 104], "2008": [33, 104], "00038": [33, 104], "andrew": [33, 52, 104], "ferguson": [33, 104], "athanassio": [33, 104], "panagiotopoulo": [33, 104], "kevrekidi": [33, 104], "pablo": [33, 104], "debenedetti": [33, 104], "nonlinear": [33, 104], "chemic": [33, 34, 38, 53, 98, 104, 114], "509": [33, 104], "00085": [33, 104], "cplett": [33, 104], "066": [33, 104], "mari": [33, 104], "rohrdanz": [33, 104], "wenwei": [33, 104], "zheng": [33, 104], "mauro": [33, 104], "maggioni": [33, 104], "cecilia": [33, 104], "clementi": [33, 104], "reaction": [33, 104, 105], "124116": [33, 104], "march": [33, 48, 100, 104], "00220": [33, 104], "3569857": [33, 104], "alb93": [34, 104], "jol02": [34, 104], "sjs14": [34, 104], "ss18": [34, 104], "therebi": 34, "covari": [34, 45, 105], "diagonalis": 34, "determinist": 34, "alter": [34, 48], "answer": 34, "variat": [34, 38], "n_compon": [34, 43, 44], "p_compon": 34, "times3": 34, "n_bb": 34, "855": 34, "2565": [34, 45], "explain": 34, "decim": [34, 94, 108], "pc1": [34, 43, 44], "5f": [34, 40], "4203": 34, "19053": 34, "meaningless": 34, "intuit": 34, "percentag": 34, "cumul": [34, 36, 40], "cumulated_vari": 34, "903": 34, "951": 34, "964": 34, "overlin": 34, "th": [34, 40], "tranform": 34, "pc2": [34, 43, 44], "pc3": [34, 43, 44], "118": 34, "408413": 34, "088241": 34, "746624": 34, "115": 34, "561879": 34, "786797": 34, "652498": 34, "112": [34, 87, 103], "675616": 34, "038766": 34, "920274": 34, "341467": 34, "306984": 34, "427098": 34, "107": 34, "584302": 34, "464154": 34, "612104": 34, "outer": 34, "otim": 34, "trans1": 34, "reshap": [34, 44], "proj1": 34, "fac": [34, 114], "random": [34, 89, 94, 103], "perfect": 34, "mls09": [34, 104], "hes02": [34, 104], "cosine_cont": 34, "dmonstrat": 34, "960": [34, 98], "906": 34, "723": [34, 83], "resembl": 34, "tidi": 34, "id_var": 34, "var_nam": 34, "value_nam": 34, "facetgrid": 34, "lineplot": 34, "ci": 34, "confid": 34, "interv": 34, "andrea": [34, 104], "amadei": [34, 104], "antoniu": [34, 104], "linssen": [34, 104], "herman": [34, 104], "berendsen": [34, 104], "412": [34, 104], "_eprint": [34, 104], "onlinelibrari": [34, 104], "pdf": [34, 57, 104], "prot": [34, 37, 104], "340170408": [34, 104], "jolliff": [34, 104], "springer": [34, 104], "verlag": [34, 104], "york": [34, 104], "2002": [34, 104], "isbn": [34, 104], "978": [34, 104], "387": [34, 104], "95442": [34, 104], "gp": [34, 104], "book": [34, 104], "9780387954424": [34, 104], "1007": [34, 104], "b98835": [34, 104], "florian": [34, 104], "sittel": [34, 104], "abhinav": [34, 104], "jain": [34, 104], "gerhard": [34, 104], "stock": [34, 104], "cartesian": [34, 49, 104, 105], "intern": [34, 53, 104, 110], "141": [34, 96, 104], "014111": [34, 104], "4885338": [34, 104], "perspect": [34, 104], "metast": [34, 104], "150901": [34, 104], "american": [34, 38, 104], "institut": [34, 104], "aip": [34, 104], "scitat": [34, 104], "5049637": [34, 104], "xtc": [36, 37, 40, 42, 44, 45, 46, 48, 53, 55, 58, 59, 61, 98, 103, 105, 112, 114], "g_": [36, 40], "normalis": [36, 40, 48], "homogen": [36, 40], "n_a": 36, "n_b": 36, "delta": [36, 48], "_j": 36, "int_0": 36, "dr": 36, "rho": 36, "neighbour": [36, 42, 46], "solvat": [36, 48], "shell": [36, 40, 106], "spheric": [36, 40, 106], "interrdf": [36, 40, 105], "res60": 36, "irdf": 36, "nbin": [36, 40, 49], "0x7f0442f64370": 36, "000e": [36, 109], "200e": 36, "800e": 36, "010e": 36, "540e": 36, "700e": 36, "920e": 36, "300e": 36, "950e": 36, "140e": 36, "290e": 36, "310e": 36, "190e": 36, "780e": 36, "020e": 36, "910e": 36, "560e": 36, "320e": 36, "017e": 36, "089e": 36, "197e": 36, "364e": 36, "349e": 36, "483e": 36, "556e": 36, "713e": 36, "783e": 36, "781e": 36, "145e": 36, "298e": 36, "379e": 36, "501e": 36, "777e": 36, "868e": 36, "900e": 36, "024e": 36, "186e": 36, "244e": 36, "382e": 36, "551e": 36, "817e": 36, "829e": 36, "160e": 36, "219e": 36, "411e": 36, "557e": 36, "824e": 36, "943e": 36, "980e": 36, "237e": 36, "507e": 36, "630e": 36, "878e": 36, "193e": 36, "533e": 36, "740e": 36, "922e": 36, "276e": 36, "293e": 36, "616e": 36, "themselv": [36, 108], "exclusion_block": 36, "mask": 36, "irdf2": 36, "0x7f044305ffa0": 36, "threonin": 36, "irdf3": 36, "0x7f0443041df0": 36, "discount": 36, "exclus": [36, 87, 105], "thr_c1": 36, "thr_other1": 36, "cg2": 36, "hg21": 36, "hg22": 36, "hg23": 36, "thr_c": 36, "thr_other": 36, "irdf4": 36, "0x7f0442bc0af0": 36, "compris": 37, "gro": [37, 42, 44, 45, 46, 53, 58, 59, 61, 87, 97, 103, 105, 109, 114], "canon": 37, "phi": 37, "psi": 37, "omega": 37, "chi_n": 37, "chi": 37, "chi_1": 37, "phi_select": 37, "220": [37, 82], "il": [37, 53, 105, 106, 107, 109], "leu": [37, 53, 107], "psi_select": 37, "omega_select": 37, "chi1_select": [37, 105], "169": 37, "78220560918737": 37, "dih": [37, 57], "n_atomgroup": 37, "ang": 37, "degre": [37, 39, 53, 67, 81, 82, 113], "0x7fcd2ba11580": 37, "fig_polar": 37, "ax_polar": 37, "add_subplot": [37, 44, 48], "111": [37, 44, 48], "polar": 37, "0x7fcd2b8cb430": 37, "omit": [37, 57, 83], "hold": [37, 53, 99, 111, 114], "rama": 37, "212": [37, 53], "407": 37, "dark": 37, "margin": 37, "lighter": [37, 108], "500": [37, 52, 57, 114], "lda": [37, 104], "99": [37, 53, 65, 93, 105], "chi_2": 37, "alanin": [37, 96, 106], "cystein": 37, "129": [37, 38, 98, 104], "589": [37, 57], "ala": [37, 52, 53, 87, 96, 98, 106, 107], "cy": [37, 105, 107], "pro": [37, 96, 107], "ser": [37, 105, 107], "val": [37, 39, 105, 107], "select_remov": 37, "jwlm78": [37, 104], "jo\u00ebl": [37, 104], "shoshanna": [37, 104], "wodak": [37, 104], "levitt": [37, 104], "bernard": [37, 52, 104], "maigret": [37, 104], "125": [37, 82, 104], "357": [37, 104], "386": [37, 98, 104], "1978": [37, 104], "00874": [37, 104], "sciencedirect": [37, 104], "0022283678904084": [37, 104], "0022": [37, 104], "2836": [37, 104], "78": [37, 81, 104], "90408": [37, 104], "simon": [37, 104], "lovel": [37, 104], "davi": [37, 104], "bryan": [37, 104], "arendal": [37, 104], "bakker": [37, 104], "prisant": [37, 104], "jane": [37, 104], "richardson": [37, 104], "valid": [37, 81, 89, 104, 105, 106], "c\u03b1": [37, 104], "\u03d5": [37, 104], "\u03c8": [37, 104], "c\u03b2": [37, 104], "437": [37, 104], "450": [37, 104], "januari": [37, 104], "2003": [37, 104], "03997": [37, 104], "10286": [37, 104], "hkp": [38, 104], "gnm": 38, "concert": 38, "bound": [38, 42, 44, 45, 53, 103], "spring": 38, "robust": [38, 105], "decomposit": [38, 43, 44], "gnmanalysi": 38, "nma1": 38, "0x7f05569e96d0": 38, "picosecond": [38, 52, 53, 79, 113], "nma2": 38, "0x7f0556a1f8e0": 38, "lowest": [38, 46, 50, 105], "frequenc": [38, 104], "peak": 38, "histfig": 38, "histax": 38, "nrow": 38, "sharex": 38, "sharei": [38, 42, 44], "set_xlabel": [38, 43, 44], "stai": 38, "linefig": 38, "lineax": 38, "0x7f05540e1ac0": 38, "closecontactgnmanalysi": 38, "kirchhoff": 38, "nma_clos": 38, "0x7f0554052c40": 38, "benjamin": [38, 104], "hall": [38, 104], "samantha": [38, 104], "kay": [38, 104], "andi": [38, 104], "pang": [38, 104], "rafael": [38, 104], "perera": [38, 104], "biggin": [38, 104], "character": [38, 39, 104], "societi": [38, 104], "11394": [38, 104], "11401": [38, 104], "septemb": [38, 104], "00020": [38, 104], "1021": [38, 104], "ja071797i": [38, 104], "helic": [39, 104], "helan": [39, 104], "helix_analysi": [39, 105], "bkv00": [39, 104], "sm67": [39, 104], "hel": 39, "contigu": [39, 105], "sugeta": [39, 104], "miyazawa": [39, 104], "slide": 39, "window": [39, 43, 96, 100, 105], "local_rotation_vector": 39, "bisect": 39, "middl": 39, "local_origin": 39, "local_twist": 39, "twist": 39, "theta": 39, "residues_per_turn": 39, "local_ax": 39, "local_height": 39, "bend": [39, 87], "global_ax": 39, "all_bend": 39, "local_bend": 39, "apart": 39, "global_tilt": 39, "ref_axi": 39, "local_screw": 39, "resnum": [39, 61, 72, 87, 106, 109], "161": 39, "187": [39, 67], "summaris": 39, "local_nres_per_turn": 39, "local_helix_direct": 39, "local_screw_angl": 39, "global_axi": 39, "86": 39, "sample_sd": 39, "abs_dev": 39, "715": 39, "universe_from_origin": 39, "add_trajectori": 39, "helanal_imag": 39, "bansal": [39, 104], "kumar": [39, 46, 104], "velavan": [39, 104], "biomolecular": [39, 68, 104], "811": [39, 104], "819": [39, 104], "2000": [39, 50, 104], "00175": [39, 104], "07391102": [39, 104], "10506570": [39, 104], "interrdf_": [40, 105], "basi": [40, 83], "ca60": 40, "awai": [40, 50, 106], "ca61": 40, "ca62": 40, "sphzone": [40, 106], "sel_a": 40, "ss_rdf": 40, "norm": [40, 105], "531": 40, "superfl": 40, "0x7faa885ab280": 40, "1041": [40, 98], "571st": 40, "ca61_h2o_571": 40, "570": [40, 52], "0023665": 40, "00114292": 40, "00106921": 40, "00094167": 40, "0007466": 40, "00055068": 40, "0003116": 40, "00025464": 40, "00024669": 40, "w570": 40, "mw6365": 40, "nonzero": 40, "4374": 40, "triplet": 40, "00028": 40, "water_for_ca60": 40, "k_valu": 40, "k_count": 40, "return_count": 40, "k_max": 40, "argmax": 40, "568": 40, "get_cdf": 40, "cdf": 40, "w568": 40, "hw16365": 40, "proportion": 40, "ss_rdf_nodens": 40, "psf_namd_gbi": [42, 44, 45, 46], "dcd_namd_gbi": [42, 44, 45, 46], "clusteringmethod": [42, 43], "clm": [42, 43], "u3": [42, 44, 45, 46, 114], "namd": [42, 44, 45, 46, 58, 59, 61, 97, 103], "ce": [42, 53], "clustering_method": [42, 43], "partit": [42, 43, 44, 49], "jensen": [42, 43, 44], "shannon": [42, 43, 44], "ln": [42, 44], "ces0": 42, "details0": [42, 44], "68070702": 42, "69314718": 42, "clustercollect": 42, "cluster_collect": 42, "49": [42, 49, 57], "first_clust": 42, "centroid": [42, 43, 109], "fig0": [42, 44], "ax0": [42, 44], "im0": [42, 44], "vmax": [42, 44], "vmin": [42, 44], "xtick": [42, 44, 45], "ytick": [42, 44, 45], "cbar0": [42, 44], "set_label": [42, 44, 48], "affin": 42, "prograg": 42, "exemplar": 42, "fewer": [42, 88], "damp": 42, "numer": [42, 44, 53, 66, 106], "oscil": [42, 44], "nois": 42, "affinitypropagationn": 42, "max_it": 42, "convergence_it": 42, "add_nois": 42, "ces1": 42, "details1": [42, 44], "ncore": [42, 44], "fig1": [42, 44], "ax1": [42, 44], "im1": [42, 44], "cbar1": [42, 44], "kmean": [42, 43], "inertia": [42, 43, 109], "km1": [42, 43], "init": [42, 43], "km2": [42, 43], "dbscan": 42, "min_sampl": 42, "ep": 42, "dens": 42, "outlier": 42, "carefulli": [42, 67], "dre": [42, 44], "dres_converg": [42, 43], "db1": 42, "leaf_siz": 42, "db2": 42, "ces2": 42, "details2": [42, 44], "figsiz": [42, 44], "imi": [42, 44], "set_titl": [42, 44], "ravel": [42, 44, 48], "tolist": [42, 44], "emphasis": 42, "meanwhil": 42, "clearli": [42, 83], "n_db": 42, "bootstrap": [42, 44], "avg": [42, 44, 48], "std": [42, 44, 105], "estimate_error": [42, 44], "68682809": 42, "00000000e": 42, "26432545e": 42, "02166694e": 42, "59975057e": 42, "matteo": [42, 43, 44, 45, 104], "tiberti": [42, 43, 44, 45, 104], "papaleo": [42, 43, 44, 45, 104], "tone": [42, 43, 44, 45, 104], "bengtsen": [42, 43, 44, 45, 104], "wouter": [42, 43, 44, 45, 104], "boomsma": [42, 43, 44, 45, 104], "kresten": [42, 43, 44, 45, 104], "lindorff": [42, 43, 44, 45, 104], "larsen": [42, 43, 44, 45, 104], "quantit": [42, 43, 44, 45, 104], "plo": [42, 43, 44, 45, 46, 52, 104], "e1004415": [42, 43, 44, 45, 104], "00031": [42, 43, 44, 45, 104], "ploscompbiol": [42, 43, 44, 45, 104], "1371": [42, 43, 44, 45, 46, 104], "pcbi": [42, 43, 44, 45, 46, 104], "1004415": [42, 43, 44, 45, 104], "dimensionality_reduct": [43, 44], "dimensionalityreductionmethod": [43, 44], "drm": [43, 44], "window_s": 43, "had": [43, 102, 105], "ces_converg": 43, "rate": [43, 44], "resampl": 43, "clustering_ensemble_similar": 43, "ces_conv": 43, "number_of_window": 43, "number_of_clustering_method": 43, "sim": [43, 52], "4f": [43, 53], "4819": 43, "4028": 43, "3170": 43, "2522": 43, "1983": 43, "1464": 43, "0991": 43, "0567": 43, "0000": 43, "ces_fig": 43, "ces_ax": 43, "km3": 43, "ces_conv2": 43, "ces_fig2": 43, "ces_ax2": 43, "0x7f9eb2146160": 43, "dimension_reduction_ensemble_similar": 43, "dres_conv": 43, "52983036": 43, "41177493": 43, "31770319": 43, "24269804": 43, "18980852": 43, "13913721": 43, "06342056": 43, "03125632": 43, "dres_fig": 43, "dres_ax": 43, "sklearn": [43, 44], "principalcomponentanalysi": [43, 44], "svd_solver": [43, 44], "dres_conv2": 43, "dimensionality_reduction_method": [43, 44], "appar": 43, "dres_fig2": 43, "dres_ax2": 43, "0x7f9e98499ee0": 43, "unus": [44, 105], "mpl_toolkit": [44, 48], "mplot3d": [44, 48], "axes3d": [44, 48], "stochast": 44, "proxim": 44, "gaussian": [44, 45], "kernel": [44, 87], "scott": 44, "bandwidth": 44, "natur": 44, "symbol": [44, 81], "exact": [44, 108], "twice": 44, "dres0": 44, "68134177": 44, "68452079": 44, "66369356": 44, "reduced_coordin": 44, "300": [44, 52, 57, 114], "li": 44, "zip_data_with_label": 44, "rd_dcd": 44, "rd_dcd2": 44, "rd_namd": 44, "rdfig0": 44, "rdax0": 44, "0x7fd2165443a0": 44, "adjust": 44, "magnitud": 44, "max_lam": 44, "min_lam": 44, "ncycl": 44, "nstep": 44, "dim_red_method": 44, "stochasticproximityembeddingn": 44, "nsampl": 44, "dres1": 44, "reduced1": 44, "rdfig1": 44, "rdax1": 44, "0x7fd1d0c7ad00": 44, "pc4": 44, "dres2": 44, "dim": [44, 49, 55], "littl": [44, 90], "rd_p1": 44, "rd_p2": 44, "rd_p3": 44, "violin": 44, "distant": 44, "rd_p1_fig": 44, "rd_p1_ax": 44, "split_data": 44, "violinplot": 44, "showextrema": 44, "mainli": 44, "rd_p2_fig": 44, "rd_p2_ax": 44, "0x7fd21662ec10": 44, "rd_p3_fig": 44, "rd_p3_ax": 44, "set_zlabel": 44, "0x7fd216582df0": 44, "24545978": 44, "60069985": 44, "59556372": 44, "06153911": 44, "05076614": 44, "03881675": 44, "u4": [45, 46], "mu": 45, "sigma": [45, 48], "shrinkag": 45, "cov_estim": 45, "ml": 45, "symmetris": 45, "kullback": 45, "leibler": 45, "1f": 45, "24955": 45, "1879874": 45, "145622": 45, "1659867": 45, "161102": 45, "9900092": 45, "ensemble1_mean": 45, "domanski": [45, 52, 53], "benthal": [45, 52, 53], "rostrup": [45, 52, 53], "austin": [45, 52, 53], "tx": [45, 52, 53], "pmcid": [45, 52], "pmc3144279": [45, 52], "biol": [45, 50, 52], "ej": [45, 50], "jr": [45, 50], "tb": [45, 50], "mol": [45, 50, 63, 78, 87, 105, 113], "psa": 46, "sktb15": [46, 104], "u5": 46, "psanalysi": 46, "path_select": 46, "core_sel": 46, "generate_path": 46, "delta_h": 46, "max_": 46, "nearest": [46, 57], "greatest": 46, "commut": 46, "directed_hausdorff": 46, "33312648": 46, "37206002": 46, "04737477": 46, "55204678": 46, "3991666": 46, "07957562": 46, "55032598": 46, "42282661": 46, "74534554": 46, "67052252": 46, "dendrogram": 46, "hierarchi": [46, 98], "linkag": 46, "ward": 46, "640x480": 46, "plot_annotated_heatmap": 46, "delta_": 46, "gamma_": 46, "coupl": 46, "sequenc": [46, 81, 82, 93, 103, 109], "equiv": 46, "p_": 46, "a_1": 46, "q_": 46, "b_1": 46, "a_2": 46, "b_2": 46, "a_l": 46, "b_l": 46, "b_i": 46, "discrete_frechet": 46, "33312649": 46, "37205967": 46, "04737475": 46, "55204694": 46, "39916723": 46, "07957565": 46, "55032613": 46, "42282569": 46, "74534511": 46, "67052241": 46, "avishek": [46, 104], "thorp": [46, 104], "e1004568": [46, 104], "1004568": [46, 104], "densityanalysi": [48, 105], "ipygani": 48, "tip4p": [48, 113], "broken": [48, 50, 105], "boundari": [48, 105, 106, 112], "view1": 48, "add_represent": [48, 50, 55], "licoric": 48, "density_analysis_imag": 48, "density_analysi": 48, "cross": [48, 87], "wall": 48, "closest": 48, "tabl": [48, 105, 109, 113], "trjconv": 48, "unwrap": [48, 105, 109, 112], "pbc": [48, 52, 105, 108], "symmetr": 48, "center_in_box": [48, 55, 112], "fit_rot_tran": [48, 112], "rot": 48, "tran": [48, 55, 112], "odd": 48, "placement": 48, "gmx": [48, 89, 94, 96, 114], "add_transform": [48, 55, 112], "view2": 48, "lineardens": [48, 49, 105], "ow": [48, 106], "pad": 48, "0x1444979d0": 48, "convert_length": 48, "convert_dens": 48, "precomput": [48, 113], "nm": [48, 57, 66, 113], "bulk": 48, "ambient": 48, "trivial": 48, "mx": 48, "mz": 48, "rgba": 48, "130": [48, 106], "201": 48, "float": [48, 83, 105, 108, 109, 112], "255": 48, "meshgrid": 48, "nglviewer": 48, "isolevel": 48, "contour": 48, "wirefram": 48, "isolevel_typ": 48, "meanin": 48, "smooth": 48, "view3": 48, "add_compon": 48, "clear_represent": 48, "add_surfac": 48, "cyan": 48, "cube": [48, 49], "lewin": 48, "skimag": 48, "iso_v": 48, "vert": [48, 109], "face": 48, "marching_cub": 48, "plot_trisurf": 48, "iso": 48, "pv": [48, 57], "set_plot_them": 48, "mesh": 48, "structuredgrid": 48, "transpos": 48, "plotter": 48, "background_color": 48, "white": [48, 83], "add_mesh": 48, "outlin": [48, 53], "screenshot": 48, "png": [48, 57], "unfortun": [48, 50, 102], "opaqu": 48, "snippet": 48, "jupyter_backend": 48, "literatur": 48, "interpol": 48, "smoother": 48, "bicub": 48, "nvt": 49, "lin": 49, "binsiz": 49, "verifi": 49, "mass_dens": [49, 105], "00053562": 49, "00080344": 49, "00876945": 49, "03507781": 49, "00107125": 49, "00348155": 49, "00241031": 49, "02791523": 49, "04277601": 49, "0175389": 49, "00160687": 49, "00133906": 49, "00026781": 49, "03400656": 49, "0196814": 49, "02339659": 49, "0135559": 49, "keysview": 49, "slice_volum": 49, "625": 49, "mass_density_stddev": 49, "00122727": 49, "01688797": 49, "01691979": 49, "00177646": 49, "00279604": 49, "02179554": 49, "02689655": 49, "02096112": 49, "001312": 49, "01700328": 49, "03402765": 49, "02131476": 49, "01957657": 49, "charge_dens": [49, 105], "00022158": 49, "00033237": 49, "00132949": 49, "00044316": 49, "00144029": 49, "00099712": 49, "00210503": 49, "00066475": 49, "00055396": 49, "00011079": 49, "00177266": 49, "charge_density_stddev": 49, "00050771": 49, "00108553": 49, "00073491": 49, "00115669": 49, "00111344": 49, "00112985": 49, "00054276": 49, "00088633": 49, "0018406": 49, "00129204": 49, "hist_bin_edg": [49, 105], "46": [49, 52, 57, 81, 82, 98, 106], "47": [49, 57, 81, 82, 103, 109], "float32": [49, 103], "0x7f5d682b3b20": 49, "scratch": 50, "natom": 50, "n_segment": 50, "atom_resindex": [50, 114], "resindic": [50, 87, 109], "residue_segindex": 50, "segindic": [50, 109], "attach": [50, 103], "veloc": [50, 58, 61, 63, 66, 71, 88, 89, 94, 105, 111, 114], "resindex": [50, 109], "assert": 50, "3000": [50, 83], "topologyattr": [50, 105], "counter": 50, "iqmol": 50, "h2o": 50, "95908": 50, "02691": 50, "03231": 50, "hydrogen": [50, 84, 98, 105, 106], "28004": 50, "58767": 50, "70556": 50, "grid_siz": 50, "71996": 50, "coord_arrai": 50, "sol_view": 50, "ball": 50, "hasattr": [50, 53, 109], "topologygroup": [50, 109], "phosphotransferas": 50, "protein_view": 50, "cog": [50, 106], "cog2": 50, "22634681": 50, "79514029": 50, "24595657": 50, "78155009e": 50, "27156576e": 50, "97364299e": 50, "66508082": 50, "60502842": 50, "33355791": 50, "30580288e": 50, "49225059e": 50, "51332265e": 50, "combined_view": 50, "no_overlap": 50, "no_overlap_view": 50, "pictur": 50, "grai": 50, "yellow": 50, "core_seg": 50, "core_atom": 50, "2744": 50, "nmp_segment": 50, "lid_seg": 50, "nmp_atom": 50, "lid_atom": 50, "chainid": [50, 61, 65, 81, 82, 83, 97, 105, 109], "domain_view": 50, "bigger": 50, "editconf": 50, "triclin": [50, 67, 105], "cubic": [50, 87, 111], "roughli": 50, "23912": 50, "tile_univers": 50, "n_x": 50, "n_y": 50, "n_z": 50, "u_": 50, "move_bi": 50, "new_univers": 50, "new_box": 50, "tiled_view": 50, "richardjgow": 50, "gist": 50, "openmm": [51, 58, 61, 105], "pmd": 52, "prm7_ala2": 52, "rst7_ala2": 52, "pprm": 52, "load_fil": 52, "amberparm": 52, "3026": 52, "1003": 52, "3025": 52, "parameter": 52, "bondtyp": [52, 80], "req": 52, "229": 52, "mprm": 52, "restrt": [52, 58, 59, 61], "n3": [52, 107], "parametr": [52, 108], "mprm_convert": 52, "convert_to": 52, "useabl": 52, "mprm_from_parm": 52, "434": 52, "010": 52, "sophist": 52, "protein_shel": 52, "prm_protein_shel": 52, "155": [52, 98], "154": 52, "mm": 52, "app": 52, "statedatareport": 52, "mdcrdreport": 52, "createsystem": 52, "nonbondedmethod": 52, "nocutoff": 52, "constraint": [52, 87], "implicitsolv": 52, "gbn2": 52, "langevin": 52, "langevinintegr": 52, "kelvin": 52, "bath": 52, "friction": 52, "coeffici": 52, "femtosecond": [52, 66, 68, 113], "setposit": 52, "minimizeenergi": 52, "maxiter": 52, "stdout": 52, "ala2_shel": 52, "nc": [52, 58, 59, 61], "potentialenergi": 52, "kineticenergi": 52, "trj": [52, 58, 59, 61, 68, 79, 114], "kilocalori": 52, "mole": 52, "gram": 52, "millilit": 52, "20000000000000015": 52, "623": 52, "6779995219885": 52, "140631869613383": 52, "603": 52, "5373676523751": 52, "74314071570579": 52, "45325": 52, "8064191062": 52, "034909350700361955": 52, "4000000000000003": 52, "614": 52, "1849904397706": 52, "40737137186695": 52, "575": 52, "7776190679035": 52, "55559436896063": 52, "6000000000000004": 52, "606": 52, "5526783580306": 52, "61919832973248": 52, "557": [52, 82], "933480028298": 52, "153": 52, "87503334950912": 52, "400": [52, 57, 114], "8000000000000006": 52, "600": [52, 57, 98, 114], "0374380078872": 52, "988937528818184": 52, "542": [52, 78], "0485004790689": 52, "183": 52, "52934648642113": 52, "0000000000000007": 52, "2854886173518": 52, "46589388029852": 52, "523": 52, "8195947370533": 52, "251": 52, "50182419815255": 52, "trjreader": [52, 88], "peter": 52, "eastman": 52, "jason": 52, "swail": 52, "john": 52, "chodera": 52, "mcgibbon": 52, "yutong": 52, "zhao": 52, "kyle": 52, "beauchamp": 52, "lee": 52, "ping": 52, "simmonett": 52, "harrigan": 52, "chaya": 52, "stern": 52, "rafal": 52, "wiewiora": 52, "brook": 52, "vijai": 52, "pand": 52, "e1005659": 52, "central": 53, "upgrad": [53, 100, 105, 108], "fundament": [53, 56, 114], "concept": [53, 56, 98], "being": [53, 56, 61, 93, 102, 105], "trr": [53, 57, 58, 59, 61, 94, 103, 111, 114], "47681": [53, 103, 114], "remaind": 53, "bunch": 53, "structure_onli": 53, "my_pdb_fil": 53, "213": 53, "thought": [53, 99, 105, 111], "last_fiv": 53, "3337": 53, "ha1": 53, "3338": 53, "3339": 53, "3340": 53, "ot1": 53, "languag": [53, 107], "pymol": [53, 96], "318": 53, "319": [53, 82], "320": 53, "3271": 53, "oe2": 53, "3272": 53, "3273": 53, "inclus": [53, 93, 105, 106], "c_": 53, "glutam": 53, "histidin": 53, "hsd": [53, 107], "hse": [53, 107], "proton": 53, "crucial": [53, 106, 108], "rundown": 53, "ht1": 53, "ht2": 53, "ht3": 53, "hb1": [53, 98], "hb2": [53, 98], "cg": [53, 84], "hg2": 53, "sd": 53, "he1": 53, "he2": 53, "he3": 53, "near_met": 53, "groupbi": [53, 108], "asn": [53, 107], "gln": [53, 106, 107], "664622": 53, "393473": 53, "983231": 53, "414839": 53, "4344215": 53, "5134845": 53, "959755": 53, "612923": 53, "6132305": 53, "290068": 53, "075991": 53, "79665166": 53, "011126": 53, "7638984": 53, "130355": 53, "total_charg": [53, 109], "radius_of_gyr": [53, 109, 111], "bsphere": [53, 109], "06808195": 53, "25614133": 53, "75524844": 53, "accur": [53, 105], "incorrectli": [53, 83, 84, 105], "calcium": [53, 60], "inaccur": 53, "improp": [53, 61, 66, 84, 86, 97, 109, 114], "nhh": 53, "angle_nhh": 53, "matter": [53, 84, 87, 106, 109], "apex": 53, "hnh": 53, "angle_hnh": 53, "106": 53, "assess": 53, "rgyr": 53, "0f": 53, "6690": 53, "6732": 53, "7315": 53, "7223": 53, "7440": 53, "7185": 53, "7741": 53, "7764": 53, "7894": 53, "8289": 53, "8521": 53, "8549": 53, "8723": 53, "9108": 53, "9494": 53, "9810": 53, "0033": 53, "0196": 53, "0784": 53, "1265": 53, "reset": [53, 105], "rgyr_df": 53, "gyrat": [53, 105, 109], "recalcul": [53, 89], "queri": [53, 111], "updatingatomgroup": [53, 105, 106], "multi": [53, 71, 81, 82], "calpha": 53, "statement": [53, 105, 108], "divers": 53, "toggl": 53, "galleri": 53, "simpl": [53, 83, 95, 98, 104, 112], "Not": 53, "sub": [53, 66], "852774844656239": 53, "rmsd_analysi": 53, "0x140451fd0": 53, "n_select": 53, "rmsd_df": 53, "263638e": 53, "443850e": 53, "235205e": 53, "934167e": 53, "939111e": 53, "748416e": 53, "371346e": 53, "052780e": 53, "279498e": 53, "154986e": 53, "dmitri": 53, "2010": 53, "1561": 53, "1563": 53, "my_script": 53, "hidden": [53, 89, 94, 104], "blog": [55, 100, 105, 112], "nicer": 55, "border": 55, "protein_cent": 55, "triclinic_dimens": 55, "box_cent": 55, "luckili": 55, "not_protein": 55, "protein2": 55, "not_protein2": 55, "onward": [55, 105], "otf": 55, "accompani": 57, "remark": [57, 81, 82], "xvgreader": 57, "xvgfileread": 57, "footprint": 57, "edrread": [57, 105], "xvg_bz2": 57, "cobrotoxin": 57, "aux": 57, "auxread": [57, 105], "0x7fd021ce3070": 57, "stand": 57, "alon": 57, "71288": 57, "1552": 57, "2849": 57, "128": [57, 82], "4072": [57, 105], "1386": 57, "0378": 57, "2699": 57, "3118": 57, "1082": 57, "6454": 57, "658": [57, 98], "32166": 57, "493": 57, "02954": 57, "8844": 57, "739": 57, "2124": 57, "246": 57, "27269": 57, "52911": 57, "484": 57, "32501": 57, "2332": 57, "3767": 57, "1801": 57, "6234": 57, "get_auxreader_for": 57, "add_auxiliari": 57, "pdb_xvf": 57, "trr_xvf": 57, "protein_forc": 57, "nan": [57, 108], "perfectli": 57, "u_long": 57, "967": 57, "21124": 57, "00000762939453": 57, "1084": 57, "2484": 57, "00001525878906": 57, "0000305175781": 57, "700": [57, 114], "0000610351562": 57, "800": [57, 114], "900": [57, 98, 114], "protoread": 57, "next_as_aux": 57, "iter_as_aux": 57, "particularli": [57, 83, 85], "u_short": 57, "acess": 57, "iter_auxiliari": 57, "get_aux_attribut": 57, "settabl": 57, "set_aux_attribut": 57, "data_selector": 57, "auxnam": 57, "rename_aux": 57, "replic": 57, "get_descript": 57, "represent_ts_a": 57, "initial_tim": 57, "time_selector": 57, "constant_dt": 57, "auxdata": 57, "del": [57, 96], "0x7fd022ba1b50": 57, "get_aux_descript": 57, "desc": 57, "pressur": 57, "aux_edr": 57, "ener": 57, "dozen": 57, "unter": 57, "proper": [57, 60, 87, 108], "ryckaert": [57, 87], "bell": 57, "lj": 57, "coulomb": 57, "sr": 57, "disper": 57, "corr": 57, "coul": 57, "recip": 57, "conserv": 57, "dc": [57, 107], "constr": 57, "enthalpi": 57, "vir": 57, "xx": 57, "xz": 57, "yx": 57, "yy": 57, "yz": 57, "zx": 57, "zy": 57, "zz": 57, "surf": 57, "surften": 57, "vel": 57, "lamb": 57, "get_data": 57, "temp": 57, "all_data": 57, "facil": 57, "0x7fd022280670": 57, "hire": 57, "unit_dict": 57, "disabl": [57, 100, 105, 108], "convert_unit": 57, "aux_n": 57, "arbitrari": [57, 85], "53": [57, 98], "aux_edr_tpr": 57, "aux_edr_xtc": 57, "55": [57, 81, 82, 110], "term_dict": 57, "epot": 57, "525164": 57, "0625": 57, "aux_list": 57, "threshold": 57, "selected_fram": 57, "524600": 57, "trajectory_slic": 57, "67": [57, 81, 82], "monitor": 57, "memory_limit": 57, "byte": [57, 90], "mb": [57, 100], "68": [57, 98], "2e": 57, "arc": [58, 59, 61, 97, 109], "dl_poli": [58, 59, 61, 97, 105], "coor": [58, 59, 61], "card": [58, 59, 61, 97], "crdbox": [58, 59, 61], "amber": [58, 59, 61, 97, 105, 107, 109, 113], "ascii": [58, 59, 61, 97], "lammp": [58, 59, 61, 97, 103, 105, 108], "dm": [58, 59, 61, 97, 109], "desr": [58, 61, 69, 97], "ent": [58, 59, 61, 82, 93, 97, 109], "fhiaim": [58, 59, 61, 97, 109], "fhi": [58, 59, 61, 97], "gm": [58, 59, 61, 97, 109], "gamess": [58, 59, 61, 97], "hoomd": [58, 59, 61, 97], "h5md": [58, 61, 105], "IN": [58, 59, 61, 97, 109], "inpcrd": [58, 59, 61], "lammpsdump": [58, 59, 61, 97], "mdcrd": [58, 59, 61], "mol2": [58, 59, 61, 97, 105, 109], "tripo": [58, 59, 61, 97], "namdbin": [58, 61, 64], "netcdf": [58, 59, 61, 88, 105], "ncdf": [58, 59, 61], "openmmapp": [58, 61], "layer": [58, 61, 106], "openmmsimul": [58, 61], "pdbqt": [58, 59, 61, 97, 105, 109], "pqr": [58, 59, 61, 97, 105, 109], "tng": [58, 59, 61, 105], "ibisco": [58, 59, 61], "yasp": [58, 59, 61], "txyz": [58, 59, 61, 97, 109], "xpdb": [58, 59, 61, 97, 109], "compress": [58, 59, 61, 105], "nambdin": 59, "desmond": 59, "itp": [59, 61, 87], "portabl": [59, 61, 87], "transmiss": 59, "autodock": 59, "pdb2pqr": 59, "apb": 59, "xplor": [59, 61, 97], "parm7": [59, 61, 97, 109], "lossless": [59, 85, 94], "xml": [59, 61, 97, 109], "atom_typ": [60, 66], "biolog": 60, "guesser": [60, 105], "fragil": 60, "tradition": 60, "r_1": 60, "r_2": 60, "vdw": 60, "hoc": 60, "fudge_factor": 60, "likewis": [60, 87, 106], "guess_bond": [60, 109, 114], "underli": 60, "varieti": 61, "emphasi": 61, "popular": [61, 93, 99], "topology_format": [61, 93, 114], "possibli": 61, "complic": [61, 106], "surpris": 61, "encount": [61, 79, 100, 105], "scenario": [61, 79], "time_offset": 61, "openmmtopologi": 61, "atomnum": [61, 97, 109], "atomiccharg": [61, 97, 109], "record_typ": [61, 97, 98, 109], "type_indic": [61, 86, 97, 109], "chemfilesread": 62, "chemfileswrit": 62, "dlpoli": 63, "configread": 63, "dlpolypars": 63, "configpars": 63, "historyread": 63, "historypars": 63, "dl": 63, "poli": 63, "amu": 63, "dalton": 63, "kj": [63, 113], "2393": 63, "namdbinread": 64, "namdbinwrit": 64, "doubl": [64, 105], "precis": [64, 85, 94, 105, 108], "crdreader": 65, "crdwriter": 65, "crdparser": 65, "atomno": 65, "resno": 65, "ext": [65, 84], "dataread": 66, "datawrit": [66, 105], "lammpspars": [66, 76, 105], "datapars": 66, "lennard": [66, 68, 76], "jone": [66, 68, 76], "recogn": [66, 76], "atom_styl": [66, 103], "lammpsdata": 66, "header": [66, 81, 87, 91, 105], "lengthunit": [66, 68, 103], "timeunit": [66, 68, 103], "nanomet": [66, 113], "take_this_fram": 66, "dcdwriter": [67, 68, 108], "wrong": [67, 105, 114], "dcdplugin": 67, "plor": 67, "180": [67, 113], "c36b2": 67, "record": [67, 68, 81, 82, 98, 102, 105, 106, 109], "akma": [67, 68, 113], "emploi": 67, "wiki": [67, 100], "cosin": 67, "watch": 67, "autodetect": [68, 88], "dmsreader": 69, "dmsparser": 69, "sqlite": 69, "databas": 69, "chapter": 69, "gmsreader": 70, "gmsparser": 70, "firefli": 70, "uk": 70, "groread": 71, "growrit": 71, "gropars": 71, "pars": [71, 81, 83, 84, 105, 106, 114], "gsdreader": 72, "gsdparser": 72, "schema": 72, "fhiaimsread": 73, "fhiaimswrit": 73, "fhiaimspars": 73, "inpread": 74, "suffix": [74, 88, 102], "itppars": [75, 105], "dumpread": 76, "lammpsdumppars": 76, "mmtfreader": 77, "mmtfparser": 77, "quicker": 77, "mol2read": 78, "mol2writ": 78, "mol2pars": 78, "dock": 78, "previous": [78, 81, 105], "molfrompdbfil": 78, "removeh": 78, "moltomolfil": 78, "benzen": 78, "tom": 78, "wed": 78, "dec": 78, "1988": [78, 105], "no_charg": 78, "c1": [78, 106, 107], "207": 78, "091": 78, "c2": [78, 106, 107], "414": [78, 98], "c3": [78, 106, 107], "c4": [78, 106, 107], "697": 78, "c5": [78, 106, 107], "c6": [78, 107], "175": 78, "353": 78, "936": 78, "h3": 78, "h4": 78, "781": 78, "h5": 78, "939": 78, "h6": 78, "substructur": 78, "perm": 78, "ncdfreader": 79, "ncdfwriter": 79, "recognis": [79, 105, 107], "detect": [79, 86, 103], "notimplementederror": [79, 109], "scale_factor": 79, "fall": [79, 108, 109], "506": 79, "unload": 79, "parmedconvert": 80, "parmedread": 80, "parmedpars": 80, "ureybradlei": [80, 109], "pdbreader": [81, 105], "pdbwriter": [81, 105], "pdbparser": [81, 105], "serial": [81, 82, 83, 100, 103, 105, 108, 109], "resseq": [81, 82], "conect": [81, 105], "compnd": [81, 82], "endmdl": 81, "unk": [81, 82], "achar": [81, 82], "insert": [81, 82, 84, 93, 106, 109], "unoffici": 81, "lstring": [81, 82], "justifi": 81, "pdbqtreader": 82, "pdbqtwriter": 82, "pdbqtparser": 82, "substitut": [82, 112], "spec": 82, "cryst1": 82, "hetatm": [82, 83, 98, 109], "footnot": 82, "partialchrg": 82, "gasteig": 82, "peoe": 82, "atomtyp": 82, "torsion": [82, 87, 105], "notat": 82, "nsc7810": 82, "inact": 82, "a7_7": 82, "c22_23": 82, "a9_9": 82, "a11_11": 82, "a17_17": 82, "c21_21": 82, "123456789": 82, "a1": 82, "inh": 82, "054": 82, "021": 82, "002": 82, "a2": 82, "704": 82, "764": 82, "012": 82, "a3": 82, "975": 82, "431": 82, "a4": [82, 84], "070": 82, "385": [82, 98, 104], "081": 82, "a5": 82, "062": 82, "073": 82, "238": 82, "a6": 82, "306": 82, "456": 82, "226": 82, "019": 82, "a7": 82, "885": [82, 98], "114": 82, "052": 82, "a8": [82, 84], "265": 82, "621": 82, "449": 82, "a9": 82, "339": 82, "986": 82, "801": 82, "a10": 82, "667": 82, "endroot": 82, "a11": 82, "644": 82, "682": 82, "827": 82, "a16": 82, "a12": 82, "522": 82, "485": 82, "882": 82, "a15": 82, "262": 82, "209": 82, "177": 82, "a17": 82, "144": 82, "784": 82, "a14": 82, "981": 82, "910": 82, "a20": 82, "627": 82, "077": 82, "222": 82, "a13": 82, "749": 82, "135": 82, "912": 82, "a19": 82, "777": 82, "285": 82, "267": 82, "a18": 82, "650": 82, "328": 82, "c21": 82, "834": 82, "113": [82, 98], "388": 82, "o1": 82, "774": 82, "915": 82, "581": 82, "oa": 82, "o3": [82, 106, 107], "298": 82, "828": [82, 103], "endbranch": 82, "c22": 82, "535": 82, "o2": [82, 106, 107], "378": 82, "708": 82, "o4": [82, 106, 107], "659": 82, "196": [82, 98], "059": 82, "torsdof": 82, "pqrreader": 83, "pqrwriter": 83, "pqrparser": 83, "adopt": 83, "ff": 83, "recordnam": 83, "atomnam": [83, 106], "residuenam": 83, "residuenumb": 83, "shorter": 83, "anyth": [83, 100, 108], "valueerror": [83, 109], "increment": 83, "sequenti": [83, 106], "921": [83, 106], "307": 83, "410": 83, "8500": 83, "545": 83, "499": 83, "854": 83, "042": 83, "4600": 83, "2245": 83, "renumb": 83, "coordiant": 83, "electron": [83, 86, 105], "wildli": 83, "width": 83, "psfparser": 84, "flavour": 84, "caus": [84, 101, 102, 106], "encod": [84, 109], "cheq": 84, "psffre": 84, "ii": 84, "lsegid": 84, "lresid": 84, "lre": 84, "iac": 84, "amass": 84, "imov": 84, "ech": 84, "eha": 84, "i8": 84, "1x": 84, "i4": 84, "2g14": 84, "i10": 84, "psfplugin": 84, "tngreader": 85, "alongsid": 85, "storag": 85, "eas": 85, "toppars": 86, "2223": [86, 113], "atom_nam": 86, "atomic_numb": 86, "bonds_inc_hydrogen": 86, "bonds_without_hydrogen": 86, "angles_inc_hydrogen": 86, "angles_without_hydrogen": 86, "dihedrals_inc_hydrogen": 86, "dihedrals_without_hydrogen": 86, "atom_type_index": 86, "amber_atom_typ": 86, "residue_label": 86, "residue_point": 86, "tpx": 87, "ye": [87, 104], "103": 87, "116": 87, "molblock": 87, "protein_chain_a": 87, "protein_chain_b": 87, "40210": 87, "seg_": 87, "segment_index": 87, "seg_0_protein_chain_a": 87, "seg_1_protein_chain_b": 87, "seg_2_sol": 87, "hand": [87, 108], "protein_chain_xxx": 87, "xxx": 87, "463": 87, "g96": 87, "mors": 87, "fene": 87, "tabul": 87, "restraint": 87, "settl": 87, "urei": 87, "bradlei": 87, "quartic": 87, "belleman": 87, "fourier": 87, "gromacs_dir": 87, "gmxdump": 87, "gmxlib": 87, "tpxio": 87, "gmxfio_rw": 87, "gmxfio_xdr": 87, "gmxfiofio": 87, "read_tpxhead": 87, "tprreaderdevelop": 87, "read_": 87, "do_": 87, "extract_": 87, "wherev": [87, 99], "fver_err": 87, "fver": 87, "traj": 88, "orthorhomb": 88, "trrreader": 89, "trrwriter": 89, "damag": 89, "xdr": [89, 94], "disk": [89, 94], "_offset": [89, 94], "npz": [89, 94], "trjcat": [89, 94, 114], "sync": 89, "writabl": 89, "nevertheless": 89, "rebuilt": [89, 102], "workaround": [89, 94], "regener": [89, 94], "refresh_offset": [89, 94], "1893": [89, 94], "trzreader": [90, 105], "trzwriter": 90, "endian": 90, "txyzread": 91, "txyzpars": 91, "hoomdxmlpars": 92, "informatin": 92, "node": [92, 100], "anywai": 92, "unitless": 92, "extendedpdbread": 93, "extendedpdbpars": 93, "act": [93, 111], "digit": 93, "confin": 93, "reserv": 93, "xtcreader": 94, "xtcwriter": 94, "uncompress": [94, 105], "xyzread": 95, "xyzwrit": 95, "xyzpars": 95, "loos": 95, "xyzplugin": 95, "compat": [95, 100, 101, 102, 105, 108], "definiton": 95, "whenc": 95, "NOT": 95, "coord": 95, "atomn": 95, "moment": [95, 105, 106, 109], "selectionwrit": 96, "ndx": 96, "jmol": 96, "spt": 96, "pml": 96, "situat": [96, 100], "ala_select": 96, "tcl": 96, "sel": 96, "atomselect": 96, "gui": 96, "singleword": 96, "mdanalysis001": 96, "mdanalysis002": 96, "tyr_thr": 96, "make_ndx": 96, "301": 96, "140": 96, "nr": 96, "splitch": 96, "enter": 96, "splitr": 96, "splitat": 96, "char": [96, 105], "sensit": [96, 106], "ri": 96, "direcli": 96, "gromacswrapp": 96, "foremost": 98, "compos": 98, "knowledg": [98, 105], "lysh": [98, 107], "seg_0_protein_a": 98, "caution": [98, 105], "intend": [98, 100], "stringio": 98, "402": 98, "919": 98, "578": 98, "287": 98, "415": 98, "405": 98, "954": 98, "168": 98, "416": 98, "821": 98, "946": 98, "164": 98, "417": 98, "958": 98, "968": 98, "418": 98, "551": [98, 103], "935": 98, "743": 98, "ha3": 98, "225": 98, "313": [98, 108], "492": 98, "249": 98, "ter": 98, "1929": 98, "n1": [98, 107], "275": 98, "239": [98, 103], "1029": 98, "408": 98, "612": 98, "814": 98, "1030": 98, "529": 98, "537": 98, "038": 98, "1031": 98, "914": 98, "374": 98, "1032": 98, "904": 98, "918": 98, "1033": 98, "835": 98, "889": 98, "613": 98, "1034": 98, "636": 98, "727": 98, "1035": 98, "592": 98, "707": 98, "1036": 98, "583": 98, "783": 98, "1037": 98, "998": 98, "983": 98, "1038": 98, "hb3": 98, "788": 98, "635": 98, "554": 98, "123": 98, "713": 98, "969": 98, "223": 98, "550": 98, "460": 98, "309": 98, "018": [98, 104], "745": 98, "1042": 98, "349": 98, "234": 98, "601": 98, "1043": 98, "290": 98, "845": 98, "1044": 98, "593": 98, "976": 98, "395": 98, "1045": 98, "430": 98, "831": 98, "residues_by_seg": 98, "seg": [98, 106], "p_seg": 98, "rg": [98, 107], "me": 98, "selected_atom": 98, "all_residu": 98, "heavi": [98, 105], "sidechain": 98, "atoms_in_residu": 98, "p_re": 98, "simplifi": 98, "rd": 98, "all_atoms_in_residu": 98, "reachabl": 98, "travers": 98, "lysozym": 98, "2lyz": 98, "230": 98, "tpr2021": 98, "1960": 98, "1959": 98, "1961": 98, "nov": 99, "2023": [99, 105], "overwhelm": 99, "pick": [99, 102, 108], "relationship": 99, "ground": 99, "abid": 99, "background": 99, "listen": 99, "understand": 99, "viewpoint": 99, "blame": 99, "focu": 99, "mistak": [99, 114], "anybodi": 99, "privat": 99, "everybodi": 99, "plan": [100, 105], "openmp": 100, "daili": 100, "microsoft": 100, "studio": 100, "visualstudio": 100, "scroll": 100, "clean": 100, "exclud": [100, 105], "jupyterlab": 100, "nodej": 100, "labextens": 100, "cython": [100, 105], "pytest": [100, 105, 108], "pyarg": 100, "xfail": [100, 108], "xdist": [100, 105, 108], "numprocess": [100, 108], "extra_cflag": 100, "architectur": [100, 105], "tune": [100, 105], "mtune": 100, "mcpu": 100, "cpu": 100, "x86_64": [100, 105], "autovectoris": 100, "arm": [100, 105], "platform": 100, "powerpc": 100, "dicuss": 100, "elsewher": 100, "usabl": 100, "supercomput": 100, "login": 100, "experienc": 100, "__future__": 101, "absolute_import": 101, "print_funct": 101, "divis": 101, "six": 101, "666": 101, "189": 101, "__init__": [101, 102], "underestim": 101, "nonstandard": 101, "principl": 101, "1159": 101, "notifi": 101, "portion": 101, "guard": 101, "patch": 102, "semant": 102, "introduc": [102, 105], "incompat": [102, 105], "backward": [102, 105], "stabil": 102, "metadata": 102, "monoton": 102, "declar": [102, 108], "freez": 102, "discord": 102, "version_numb": 102, "deploy": 102, "action": 102, "adequ": [102, 108], "commit": [102, 105], "tarbal": 102, "pipx": 102, "sdist": 102, "deploi": [102, 108], "testpypi": 102, "successfulli": 102, "bumpi": 102, "yank": 102, "osx": [102, 105], "arm64": [102, 105], "linux": [102, 105], "aarch64": [102, 105], "whl": 102, "twine": 102, "presens": 102, "feedstock": 102, "meta": 102, "yaml": [102, 108], "bump": 102, "pin": 102, "conda_build_config": 102, "syrupi": 102, "confirm": 102, "gen_release_not": 102, "flaki": 102, "ey": 102, "twitter": 102, "round": [102, 108], "json": 102, "trajectory1": 103, "trajectory2": 103, "stitch": 103, "jump": 103, "depict": 103, "part01": 103, "part02": 103, "part03": 103, "part04": 103, "ultim": 103, "responsibl": 103, "meaningfulli": 103, "chainread": [103, 105, 114], "adk_oplsaa": [103, 114], "suffici": [103, 108], "sped": 103, "substanti": [103, 108], "decis": 103, "transfer_to_memori": 103, "subsequ": 103, "017": 103, "555": 103, "188": 103, "722": 103, "039": 103, "342": 103, "072": 103, "988": [103, 105], "684": 103, "324": 103, "804": 103, "961": 103, "753": 103, "rand": 103, "01341493": 103, "8954516": 103, "48900408": 103, "0416302": 103, "81844276": 103, "6713378": 103, "32844332": 103, "8965664": 103, "8370764": 103, "04501093": 103, "29551986": 103, "05062775": 103, "6661255": 103, "7034433": 103, "08090701": 103, "52956533": 103, "7413073": 103, "81429756": 103, "universe2": 103, "alpha_al": 103, "alpha_skip2": 103, "alpha_som": 103, "unsupport": 103, "2887": 103, "unpickl": [103, 114], "afterward": 103, "g_pickl": 103, "u_pickl": 103, "h_pickl": 103, "yourscript": 104, "yourmodul": 104, "duecredit_en": 104, "thank": 104, "visit": 104, "2021": [104, 105], "berk": 104, "hess": 104, "031910": 104, "00348": 104, "ap": 104, "1103": 104, "physrev": 104, "janin": [104, 105], "gia": 104, "maisuradz": 104, "adam": 104, "liwo": 104, "harold": 104, "scheraga": 104, "329": 104, "pmc2652707": 104, "arallel": 104, "olecular": 104, "ynamic": 104, "nalysi": 104, "hri": 104, "allowai": 104, "avid": 104, "ippa": 104, "illon": 104, "iederhut": 104, "hupe": 104, "roceed": 104, "ython": 104, "cienc": 104, "onfer": 104, "hiromu": 104, "tatsuo": 104, "biopolym": 104, "673": 104, "679": 104, "1967": 104, "bip": 104, "360050708": 104, "arxiv": 104, "bugfix": 105, "serv": 105, "revert": 105, "v2": [105, 108], "oldest": 105, "4261": 105, "in1d": 105, "isin": 105, "prepart": 105, "4255": 105, "4237": 105, "4246": 105, "n0a": 105, "4167": 105, "4168": 105, "clarif": 105, "survivalprob": 105, "4247": 105, "4248": 105, "pillos": 105, "gplv3": 105, "addition": 105, "44733fc214dcfdcc2b7cb3e3705258781bb491bd": 105, "lgplv2": 105, "upcom": 105, "nep29": 105, "runtim": 105, "ffast": 105, "intel": 105, "center_of_charg": [105, 109], "incorrect": [105, 114], "4220": 105, "gzip": 105, "bzip2": 105, "4163": 105, "accident": 105, "4003": 105, "exclude_sam": 105, "4161": 105, "4170": 105, "4191": 105, "4198": 105, "4160": 105, "4174": 105, "4153": 105, "offici": 105, "4176": 105, "better": [105, 108], "gplv2": 105, "apach": 105, "4219": 105, "misspelt": 105, "boltzman_const": 105, "favour": 105, "spelt": 105, "boltzmann_const": 105, "4230": 105, "4214": 105, "4200": 105, "mohitkumar020291": 105, "4182": 105, "shubx10": 105, "4184": 105, "ztimol": 105, "wheel": 105, "3657": 105, "4008": 105, "3906": 105, "distance_typ": 105, "waterbridgeanalysi": 105, "4040": 105, "4066": 105, "unknown": 105, "formal": 105, "4027": 105, "led": 105, "4092": 105, "4091": 105, "cg1": 105, "og": 105, "sg": 105, "4108": 105, "4109": 105, "4075": 105, "4076": 105, "4073": 105, "4074": 105, "shape_paramet": [105, 109], "aspher": [105, 109], "3002": 105, "3905": 105, "edr": 105, "3999": 105, "pairij": 105, "coeff": 105, "3336": 105, "3988": 105, "4054": 105, "atomicdist": 105, "3654": 105, "4105": 105, "4140": 105, "3825": 105, "molecule_tag": 105, "3548": 105, "progressbar_kwarg": 105, "progressbar": 105, "4085": 105, "nojump": 105, "3703": 105, "4031": 105, "3904": 105, "4047": 105, "distopia": 105, "backend": 105, "calc_bond": 105, "3783": 105, "3914": 105, "1785": 105, "3887": 105, "3953": 105, "4115": 105, "3983": 105, "einsteinmsd": 105, "_conclude_simpl": 105, "_conclude_fft": 105, "4070": 105, "nucleicacid": 105, "nucpairdist": 105, "watsoncrickdist": 105, "pair_dist": 105, "3744": 105, "rdkitconvert": 105, "3996": 105, "monatomic_cation_charg": 105, "standardization_react": 105, "fine": 105, "unpair": 105, "neighbor": 105, "runreactantinplac": 105, "bespok": 105, "transfer": 105, "mglagolev": 105, "3959": 105, "chrispfa": 105, "4009": 105, "ooprathamm": 105, "4010": 105, "meetb7": 105, "4022": 105, "parmar": 105, "4032": 105, "moschaeffl": 105, "4049": 105, "jandom": 105, "4043": 105, "xhgchen": 105, "4037": 105, "drdomenicomarson": 105, "ahm": 105, "salah00": 105, "4059": 105, "schlaicha": 105, "jvermaa": 105, "sophiaruan": 105, "marinegor": 105, "g2707": 105, "4089": 105, "danieljamesevan": 105, "2gb": 105, "4039": 105, "4015": 105, "histogramdd": 105, "3976": 105, "streamlines_3d": 105, "streamlin": 105, "truth": 105, "3977": 105, "month": 105, "outreachi": 105, "umak": 105, "gsoc": 105, "bfedder": 105, "auxialliari": 105, "3749": 105, "aya9aladdin": 105, "hmacdop": 105, "3765": 105, "isolay": 105, "3846": 105, "3844": 105, "3890": 105, "readerbas": 105, "pathlib": 105, "3935": 105, "3848": 105, "extra_requir": 105, "favor": 105, "extra_format": 105, "3810": 105, "auxilliari": 105, "libmdanalysi": 105, "3913": 105, "sequence_align": 105, "bio": 105, "pairwisealign": 105, "pairwise2": 105, "3951": 105, "3894": 105, "sequence_alig": 105, "3958": 105, "jaclark5": 105, "pgbarletta": 105, "3876": 105, "jfennick": 105, "3832": 105, "hakarishirenai": 105, "3956": 105, "macosx": 105, "deal": 105, "corrupt": 105, "100000": [105, 113], "formalcharg": [105, 109], "3755": 105, "3687": 105, "3721": 105, "3710": 105, "3701": 105, "3711": 105, "eoss4": 105, "grant": 105, "3730": 105, "3683": 105, "shortli": 105, "modern": 105, "3415": 105, "classic": 105, "3678": 105, "1300": 105, "3680": 105, "3671": 105, "2508": 105, "3617": 105, "invers": 105, "3596": 105, "2703": 105, "accuraci": 105, "3044": 105, "chembl30": 105, "monatom": 105, "sulfur": 105, "phosphoru": 105, "conjug": 105, "watson": 105, "crick": 105, "3611": 105, "3664": 105, "3685": 105, "undefin": 105, "singlefram": 105, "3423": 105, "rewind": [105, 110], "3416": 105, "compet": 105, "3375": 105, "openmmtopologypars": 105, "3317": 105, "3511": 105, "covariance_matrix": 105, "3539": 105, "3621": 105, "3571": 105, "3572": 105, "subst_id": 105, "subst_nam": 105, "3385": 105, "3598": 105, "getmonomerinfor": 105, "getnam": 105, "noimplicit": 105, "throw": 105, "sanitizationerror": 105, "3386": 105, "3403": 105, "bat": 105, "3501": 105, "smarts_kwarg": 105, "overrid": 105, "3469": 105, "3470": 105, "contactanalysi": 105, "2666": 105, "3565": 105, "po": 105, "stddev": 105, "permiss": 105, "impact": [105, 114], "3556": 105, "lack": [105, 108], "hope": 105, "dielectr": 105, "2118": 105, "3514": 105, "h5mdreader": 105, "3466": 105, "3429": 105, "chiral": [105, 109], "3445": 105, "minimize_vector": 105, "3472": 105, "3183": 105, "3512": 105, "surfac": 105, "3419": 105, "3443": 105, "3437": 105, "typeerror": 105, "claim": 105, "3092": 105, "3257": 105, "1760": 105, "3543": 105, "sole": 105, "lammpsdumpread": 105, "3358": 105, "3115": 105, "2863": 105, "2917": 105, "intra_bond": 105, "intra_angl": 105, "intra_dihedr": 105, "1264": 105, "2821": 105, "3200": 105, "groamc": 105, "3180": 105, "preliminari": 105, "ppc64le": 105, "3127": 105, "2956": 105, "3149": 105, "3054": 105, "2927": 105, "refactor": 105, "2452": 105, "2468": 105, "from_smil": 105, "aromat": [105, 109], "dsiplac": 105, "2438": 105, "2668": 105, "pave": 105, "2723": 105, "h5mdwriter": 105, "762": 105, "2866": 105, "3364": 105, "2977": 105, "3305": 105, "3352": 105, "atttempt": 105, "2728": 105, "3314": 105, "3119": 105, "3144": 105, "3030": 105, "2422": 105, "2984": 105, "isus": 105, "2811": 105, "filter": 105, "cysh": [105, 107], "2898": 105, "layout": 105, "1738": 105, "din": 105, "2739": 105, "2746": 105, "tprparser": 105, "tpr_resid_from_on": 105, "deafult": 105, "2364": 105, "3152": 105, "write_next_timestep": 105, "density_from_univers": 105, "density_from_pdb": 105, "bfactor2rmsf": 105, "notwithin_coordinates_factori": 105, "2827": 105, "waterdynam": 105, "hydrogenbondlifetim": 105, "2842": 105, "2913": 105, "alias": 105, "1901": 105, "generate_t": 105, "3261": 105, "mvc": 105, "19xx": 105, "test_aug": 105, "190": 106, "phrase": 106, "sph_6": 106, "prop": 106, "understood": 106, "circumv": 106, "parenthes": 106, "dmpc": 106, "seq": 106, "gl": 106, "glx29": 106, "yn": 106, "fnmatch": 106, "nucleicbackbon": 106, "o5": [106, 107], "nucleicbas": 106, "nucleobas": 106, "nucleicsugar": 106, "sugar": 106, "colon": 106, "1a": 106, "1c": 106, "insensit": 106, "spc": [106, 113], "selector": 106, "crystal": 106, "protein_a": 106, "aren": 106, "lysin": 106, "externalradiu": 106, "zone": 106, "sphlayer": 106, "innerradiu": 106, "inner": 106, "cyzon": 106, "zmax": 106, "zmin": 106, "cylindr": 106, "cylind": 106, "neg": 106, "cylay": 106, "subkeyword": 106, "byre": 106, "subselect": 106, "11th": 106, "bynum": 106, "5th": 106, "preced": 106, "entireti": 106, "absent": 106, "invok": 106, "corner": 106, "ag_upd": 106, "behav": 106, "lazili": 106, "redund": 106, "923": 106, "chained_ag_upd": 106, "static_ag": 106, "elimin": 106, "opl": 107, "gromo": 107, "53a6": 107, "99sb": 107, "ildn": 107, "ac": 107, "alad": 107, "argn": 107, "asf": 107, "ash": 107, "asn1": 107, "asph": 107, "cala": 107, "carg": 107, "casf": 107, "casn": 107, "casp": 107, "ccy": 107, "ccyx": 107, "cgln": 107, "cglu": 107, "cgly": 107, "chid": 107, "chie": 107, "chip": 107, "cile": 107, "cleu": 107, "cly": 107, "cme": 107, "cmet": 107, "cphe": 107, "cpro": 107, "cser": 107, "cthr": 107, "ctrp": 107, "ctyr": 107, "cval": 107, "cym": 107, "cys1": 107, "cys2": 107, "cyx": 107, "dab": 107, "glh": 107, "gluh": 107, "hid": 107, "hie": 107, "hip": 107, "his1": 107, "his2": 107, "hisa": 107, "hisb": 107, "hisd": 107, "hise": 107, "hish": 107, "hsp": 107, "hyp": 107, "lyn": 107, "mse": 107, "nala": 107, "narg": 107, "nasn": 107, "nasp": 107, "ncy": 107, "ncyx": 107, "ngln": 107, "nglu": 107, "ngly": 107, "nhid": 107, "nhie": 107, "nhip": 107, "nile": 107, "nleu": 107, "nly": 107, "nme": 107, "nmet": 107, "nphe": 107, "npro": 107, "nser": 107, "nthr": 107, "ntrp": 107, "ntyr": 107, "nval": 107, "orn": 107, "pglu": 107, "phe": 107, "qln": 107, "trp": 107, "ra": 107, "dg3": 107, "thy": 107, "rc3": 107, "da5": 107, "gua": 107, "da3": 107, "ru5": 107, "ra3": 107, "dt5": 107, "ru": 107, "dg": 107, "rg3": 107, "dt3": 107, "rc5": 107, "ura": 107, "ru3": 107, "dc5": 107, "cyt": 107, "rg5": 107, "ra5": 107, "dg5": 107, "dc3": 107, "rc": 107, "o6": 107, "n6": 107, "n2": 107, "n7": 107, "n4": 107, "n9": 107, "c8": 107, "c5m": 107, "firstli": 108, "succe": 108, "predict": 108, "importantli": 108, "engin": 108, "carpentri": 108, "strength": 108, "worth": 108, "habit": 108, "cover": 108, "embrac": 108, "driven": 108, "repetit": 108, "desir": [108, 109, 112], "un": 108, "caught": 108, "test_align": 108, "testcontactmatrix": 108, "test_analysi": 108, "test_spars": 108, "cov": 108, "htmlcov": 108, "rebas": 108, "ideal": 108, "star": 108, "starlark": 108, "servic": 108, "categori": [108, 109], "ratio": 108, "futher": 108, "light": 108, "test_": 108, "plain": 108, "test_foo_is_length_3": 108, "foo": 108, "assert_almost_equ": 108, "test_equal_coordin": 108, "assert_equ": 108, "test_equal_arrai": 108, "array1": 108, "array2": 108, "assert_array_equ": 108, "assert_array_almost_equ": 108, "scalar": 108, "assertionerror": 108, "_privat": 108, "314": 108, "err_msg": 108, "isscalar": 108, "msg": 108, "316": 108, "317": 108, "isdesnat": 108, "isnat": 108, "nose": 108, "assert_rais": 108, "test_for_error": 108, "indexerror": 108, "test_for_warn": 108, "deprecated_funct": 108, "tested_expected_failur": 108, "test_open": 108, "tmpdir": 108, "skipif": 108, "shares_memori": 108, "test_positions_share_memori": 108, "original_and_copi": 108, "importorskip": 108, "module_nam": 108, "test_write_trajectory_netcdf4": 108, "_test_write_trajectori": 108, "ref_filenam": 108, "test_pdb_writ": 108, "thumb": 108, "fragindic": 108, "test_center_of_mass_compounds_speci": 108, "chdir": 108, "weird": 108, "556": 108, "as_cwd": 108, "test_write_no_arg": 108, "temp_fil": 108, "regress": 108, "legaci": 108, "unmaintain": 108, "receiv": 108, "consensu": 108, "emerg": 108, "confidenti": 108, "everyon": 108, "licenc": 108, "package_data": 108, "vice": 109, "versa": 109, "plural": 109, "segindex": 109, "alia": 109, "chargegroup": 109, "epsilon14": 109, "gbscreen": 109, "nbindex": 109, "nbindic": 109, "rmin": 109, "rmin14": 109, "solventradiu": 109, "solventradii": 109, "type_index": 109, "338e": 109, "339e": 109, "340e": 109, "res1": 109, "res2": 109, "res3": 109, "new_nam": 109, "notimplementederrortraceback": 109, "0f99b0dc5f49": 109, "int64": 109, "topologyobject": [109, 114], "is_guess": 109, "add_bond": 109, "add_angl": 109, "add_dihedr": 109, "add_improp": 109, "valueerrortraceback": 109, "e59c36ab66f4": 109, "770653826924175": 109, "delete_bond": 109, "delete_angl": 109, "delete_dihedr": 109, "delete_improp": 109, "04223882": 109, "01418196": 109, "03504874": 109, "bbox": 109, "pack_into_box": 109, "rotate_bi": 109, "boldsymbol": 109, "q_i": 109, "r_i": 109, "dipole_mo": 109, "dipol": 109, "dipole_vector": 109, "quadrupole_mo": 109, "quadrupol": 109, "quadrupole_tensor": 109, "traceless": 109, "tensor": 109, "align_principal_axi": 109, "gyration_mo": 109, "moment_of_inertia": 109, "principal_ax": 109, "frameiter": 110, "shift": [110, 111], "fiter": 110, "meet": 110, "9999999119200186": 111, "9999996476800743": 111, "669018368649777": 111, "743960893217544": 111, "78938645874581": 111, "87231363208217": 111, "003316543310998": 111, "with_box": 111, "u_with_box": 111, "silent": 112, "align_transform": 112, "up_by_2": 112, "up_by_x": 112, "up_by_5": 112, "set_box": 112, "cm": 113, "si": 113, "66053892103219": 113, "602176565": 113, "66053906660": 113, "kg": 113, "get_conversion_factor": 113, "femtomet": 113, "fm": 113, "picomet": 113, "pm": 113, "molar": 113, "1660": 113, "3718": 113, "8566": 113, "8864": 113, "0063": 113, "4548": 113, "microsecond": 113, "1e": 113, "millisecond": 113, "nanosecond": 113, "001": 113, "sec": 113, "\u03bc": 113, "60218e": 113, "0488882": 113, "66054e": 113, "newton": 113, "kcal": 113, "239006": 113, "ev": 113, "0103643": 113, "appl": 114, "invent": 114, "carl": 114, "sagan": 114, "cosmo": 114, "ti": 114, "arbitrarili": 114, "pdbfile": 114, "traj1": 114, "traj2": 114, "blurri": 114, "constructor": 114, "all_coordin": 114, "vdwradii": 114, "in_memory_step": 114, "nth": 114, "is_anchor": 114, "anchor_nam": 114, "prm": 114, "default_timestep": 114, "user_timestep": 114, "ligand": 114, "stage": 114, "constructing_univers": 114}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"advanc": [0, 28], "topologi": [0, 50, 61, 75, 86, 87, 97, 109, 114], "concept": 0, "ad": [0, 3, 4, 50, 109], "residu": [0, 23, 24, 98, 107], "segment": [0, 50, 98], "univers": [0, 10, 13, 50, 57, 109, 114], "molecul": [0, 48], "custom": [0, 13, 100, 112], "topologyattr": [0, 109], "atomgroup": [1, 13, 22, 53, 96, 109, 114], "creat": [1, 3, 4, 14, 16, 28, 50, 52, 87, 102, 109, 114], "an": [1, 13, 14, 16, 30, 103, 109], "atom": [1, 13, 22, 23, 24, 28, 31, 36, 37, 40, 52, 53, 56, 81, 98, 103, 106], "select": [1, 13, 23, 24, 28, 37, 52, 53, 57, 96, 103, 106, 107], "languag": [1, 106], "index": [1, 106], "slice": [1, 110], "group": [1, 19, 21, 28, 36, 37, 53, 98], "oper": 1, "set": [1, 13, 42, 44], "method": [1, 16, 18, 42, 43, 44, 46, 53, 109, 114], "groupbi": 1, "split": [1, 15], "construct": [1, 50, 114], "from": [1, 16, 53, 86, 109, 114], "order": [1, 30, 106], "uniqu": 1, "empti": 1, "dynam": [1, 53, 106], "updat": [1, 102], "contribut": [2, 3, 4, 16], "mdanalysi": [2, 3, 16, 52, 61, 87, 99, 101, 105, 107, 108, 113], "where": [2, 3], "start": [2, 53], "version": [2, 87, 100, 102], "control": 2, "git": 2, "github": [2, 3, 108], "get": [2, 53, 102], "main": 3, "codebas": 3, "work": [3, 30, 53], "code": [3, 101], "fork": [3, 4], "develop": [3, 4, 86, 87, 89, 91, 100, 102], "environ": [3, 4], "With": 3, "conda": [3, 100, 102], "pip": [3, 100], "virtualenv": 3, "On": [3, 4, 112], "mac": 3, "build": [3, 4, 102, 103], "branch": [3, 102], "write": [3, 10, 16, 18, 53, 65, 66, 67, 71, 79, 81, 82, 83, 89, 96, 103, 108], "new": [3, 10, 50, 105, 108], "format": [3, 57, 59, 61, 77, 82, 87, 103, 109], "python": 3, "modul": [3, 101, 108], "depend": [3, 7, 101], "cython": 3, "test": [3, 4, 100, 101, 105, 108], "your": [3, 16, 18], "document": [3, 4, 99, 102], "ensur": 3, "pep8": 3, "complianc": 3, "mandatori": 3, "darker": 3, "option": [3, 101], "commit": [3, 4], "push": 3, "rebas": 3, "pull": 3, "request": 3, "docstr": 3, "guidelin": 3, "chang": [3, 4, 56, 105], "doc": 3, "abstract": 3, "base": [3, 57, 113], "class": [3, 16], "view": 3, "interact": [3, 48], "user": [4, 99], "guid": [4, 53, 99], "clone": 4, "save": 4, "state": 4, "jupyt": 4, "notebook": 4, "pytest": 4, "nbval": 4, "sanit": 4, "hole2": [4, 30], "userguid": [4, 102], "automat": [4, 53], "us": [4, 28, 30, 38, 43, 52, 57, 87, 98, 104, 108], "pre": 4, "hook": 4, "exampl": [5, 6, 112], "data": [5, 13, 26, 30, 57, 66, 108], "mdanalysistest": 5, "mdanalysisdata": 5, "gener": [6, 46, 85, 87, 101, 108], "analysi": [6, 7, 15, 16, 18, 19, 20, 21, 25, 26, 34, 37, 38, 39, 42, 44, 53, 101, 108], "import": [7, 101, 108], "align": [7, 8, 9, 10, 11, 14, 46, 48], "rm": [7, 8], "fit": [7, 8], "distanc": [7, 17, 22, 23, 24, 46], "contact": [7, 17, 18, 19, 20, 21, 38], "trajectori": [7, 10, 11, 12, 13, 14, 15, 16, 19, 30, 34, 41, 46, 53, 55, 56, 57, 62, 67, 68, 70, 79, 85, 88, 89, 90, 94, 95, 103, 110, 111], "similar": [7, 41, 42, 43, 44, 45, 46, 106], "structur": [7, 9, 13, 14, 35, 53, 69, 71, 78, 80, 82, 84], "volumetr": [7, 47], "analys": [7, 15, 30, 47, 48], "dimens": [7, 30, 32, 33, 43, 44], "reduct": [7, 32, 33, 43, 44], "polym": [7, 29, 31], "membran": [7, 29], "hydrogen": [7, 25, 26, 27, 28], "bond": [7, 25, 26, 27, 28, 50, 60, 87], "anoth": 9, "load": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 53, 55, 57, 114], "file": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 52, 55, 57, 62, 64, 65, 69, 71, 72, 73, 74, 75, 76, 81, 83, 84, 87, 89, 93, 94, 102, 103, 108, 114], "alignto": 9, "refer": [9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 59, 104], "aligntraj": 10, "copi": 10, "coordin": [10, 13, 23, 53, 58, 61], "itself": [11, 12, 36], "first": 11, "frame": [11, 15, 53, 57, 103], "third": 11, "calcul": [12, 13, 14, 20, 21, 22, 23, 24, 26, 27, 28, 31, 36, 37, 40, 42, 44, 45, 48], "pairwis": 12, "rmsd": [12, 13, 53], "background": [12, 13, 14, 15, 18, 19, 20, 21, 30], "between": [12, 13, 22, 23, 28, 42, 44, 45, 52], "two": [12, 13, 23, 36], "root": [13, 14], "mean": [13, 14], "squar": [13, 14], "deviat": 13, "multipl": [13, 15, 19, 42, 44, 96, 103], "plot": [13, 14, 18, 19, 20, 21, 22, 23, 24, 30, 37, 42, 44, 45, 46, 48], "weight": 13, "mass": [13, 49, 60], "fluctuat": 14, "over": [14, 19, 56, 57], "averag": [14, 36, 48], "rmsf": 14, "visualis": [14, 30, 34, 48], "b": 14, "factor": 14, "parallel": [15, 108], "radiu": [15, 16, 19], "gyrat": [15, 16], "serial": 15, "simpl": [15, 106], "per": 15, "fashion": 15, "wise": [15, 22, 24], "form": 15, "function": [15, 16, 18, 26, 36, 40, 108], "multiprocess": 15, "dask": 15, "appli": 15, "combin": 15, "block": 15, "result": [15, 26], "other": [15, 16, 51], "possibl": 15, "approach": 15, "see": 15, "also": 15, "own": [16, 18], "transform": [16, 48, 54, 55, 112], "1": [16, 105], "defin": [16, 18, 19, 21], "__init__": 16, "2": [16, 105], "_single_fram": 16, "nativ": [18, 19], "salt": 18, "bridg": 18, "fraction": 19, "hard": 19, "cutoff": [19, 21], "singl": [19, 53, 96], "soft": 19, "q1": 20, "v": 20, "q2": 20, "number": [21, 102], "within": [21, 24], "match": [22, 23], "ca": 22, "period": 22, "boundari": 22, "condit": 22, "all": [23, 24, 27, 28, 55, 61], "non": [23, 33], "arrai": 23, "heatmap": 23, "each": [24, 49], "basic": 26, "find": [26, 27, 28], "water": [26, 48, 50], "access": [26, 57], "helper": 26, "further": 26, "store": 26, "lifetim": 27, "time": [27, 113], "constant": [27, 113], "intermitt": 27, "individu": 27, "guess_acceptor": 28, "guess_hydrogen": 28, "more": 28, "specif": [28, 40, 78, 81, 82, 83, 84, 86, 87, 95, 109], "pore": 30, "hole": 30, "pdb": [30, 81, 82, 93], "vmd": 30, "surfac": [30, 48], "profil": 30, "paramet": [30, 42, 44], "delet": [30, 109], "determin": 31, "persist": 31, "length": [31, 113], "choos": 31, "chain": 31, "backbon": [31, 107], "linear": 33, "diffus": 33, "map": 33, "princip": 34, "compon": 34, "project": 34, "reduc": 34, "dimension": [34, 43], "space": 34, "measur": [34, 43], "converg": [34, 43], "cosin": 34, "content": 34, "radial": [36, 40], "distribut": [36, 40], "protein": [37, 48, 50, 55, 84, 107], "dihedr": [37, 60, 87], "angl": [37, 60, 87], "ramachandran": 37, "janin": 37, "elast": 38, "network": 38, "gaussian": 38, "model": 38, "onli": 38, "close": 38, "helix": 39, "run": [39, 87, 108], "rdf": 40, "site": 40, "The": [40, 109], "without": 40, "densiti": [40, 48, 49, 113], "cluster": [42, 43], "ensembl": [42, 43, 44, 45], "default": [42, 43, 44, 109], "one": [42, 44], "try": [42, 44], "out": [42, 44, 53, 65, 66, 67, 71, 79, 81, 82, 83, 89], "differ": [42, 43, 44, 52, 108], "estim": [42, 44], "error": [42, 44], "evalu": 43, "argument": [43, 57], "compar": [43, 46], "harmon": 45, "geometr": [46, 106], "path": 46, "hausdorff": 46, "discret": 46, "fr\u00e9chet": 46, "solvent": [48, 55], "around": 48, "center": [48, 55], "make": 48, "whole": 48, "fly": [48, 55, 112], "matplotlib": 48, "3d": 48, "static": 48, "nglview": 48, "scikit": 48, "imag": 48, "triangul": 48, "pyvista": 48, "2d": 48, "comput": 49, "charg": [49, 113], "axi": 49, "modifi": [50, 106, 109], "popul": 50, "blank": 50, "attribut": [50, 57, 61, 86, 97, 109, 114], "posit": [50, 53, 56], "merg": 50, "tile": 50, "larger": 50, "acknowledg": 50, "parm": [52, 80], "openmm": 52, "simul": 52, "system": [52, 109], "quick": 53, "overview": [53, 61], "inform": [53, 58, 61, 109], "citat": [53, 104], "duecredit": [53, 104], "box": 55, "befor": 55, "unwrap": 55, "wrap": 55, "back": 55, "do": [55, 56], "thi": 55, "frequent": 56, "ask": 56, "question": 56, "why": [56, 99], "auxiliari": 57, "support": [57, 58, 61, 87, 96, 97], "xvg": 57, "read": [57, 58, 61, 65, 66, 67, 70, 71, 72, 76, 79, 81, 82, 83, 84, 85, 87, 88, 89, 94, 95, 96, 97, 103], "directli": 57, "pass": 57, "iter": 57, "recreat": 57, "edr": 57, "standalon": 57, "usag": 57, "unit": [57, 113], "handl": 57, "memori": [57, 103], "tabl": [58, 61, 97], "reader": [58, 61], "guess": [60, 114], "type": 60, "improp": [60, 87], "parser": [61, 97], "chemfil": 62, "config": 63, "dl_poli": 63, "histori": 63, "coor": 64, "nambdin": 64, "namd": [64, 67, 84], "binari": 64, "restart": [64, 74], "crd": 65, "charmm": [65, 67, 84], "card": 65, "lammp": [66, 67, 68, 76], "dcd": [67, 68], "flexibl": 68, "dm": 69, "desmond": 69, "molecular": 69, "gm": 70, "gamess": 70, "gro": 71, "gromac": [71, 75, 87, 89, 94], "gsd": 72, "hoomd": [72, 92], "IN": 73, "fhiaim": 73, "fhi": 73, "aim": 73, "input": [73, 103, 108], "inpcrd": 74, "restrt": 74, "amber": [74, 79, 86, 88], "itp": 75, "portabl": 75, "lammpsdump": 76, "ascii": [76, 88], "dump": 76, "mmtf": 77, "macromolecular": 77, "transmiss": 77, "mol2": 78, "tripo": 78, "ncdf": 79, "nc": 79, "netcdf": 79, "ent": 81, "standard": [81, 107], "cryst1": 81, "field": 81, "hetatm": 81, "pdbqt": 82, "autodock": 82, "extens": 82, "pqr": 83, "pdb2pqr": 83, "apb": 83, "psf": 84, "xplor": 84, "tng": 85, "next": [85, 102], "top": 86, "prmtop": 86, "parm7": 86, "pars": [86, 87], "keyword": [86, 106], "note": [86, 87, 89, 91, 95, 105], "tpr": 87, "tprparser": 87, "segid": 87, "chainid": 87, "entri": 87, "trj": 88, "mdcrd": 88, "crdbox": 88, "trr": 89, "lossless": 89, "trz": 90, "ibisco": 90, "yasp": 90, "txyz": 91, "arc": 91, "tinker": 91, "xml": 92, "xpdb": 93, "extend": 93, "xtc": 94, "compress": 94, "xyz": 95, "export": 96, "case": 98, "sequenc": 98, "list": [98, 101], "fragment": 98, "welcom": 99, "": 99, "particip": 99, "commun": 99, "instal": 100, "compil": 100, "flag": 100, "optimis": 100, "addit": 100, "dataset": 100, "rule": 101, "suit": [101, 108], "core": 101, "visual": [101, 108], "prepar": 102, "releas": [102, 105], "polici": 102, "typic": 102, "workflow": [102, 112], "summari": 102, "task": 102, "readi": 102, "packag": 102, "complet": 102, "manual": 102, "upload": 102, "cirru": [102, 108], "ci": [102, 108], "wheel": 102, "temporari": [102, 108], "forg": 102, "blog": 102, "post": 102, "outlin": 102, "increment": 102, "clean": 102, "up": 102, "old": 102, "In": 103, "transfer": 103, "output": 103, "pickl": 103, "6": 105, "bug": 105, "fix": 105, "contributor": 105, "0": 105, "major": 105, "enhanc": 105, "deprec": 105, "5": 105, "enchanc": 105, "4": 105, "3": 105, "czi": 105, "eoss": 105, "perform": 105, "improv": 105, "known": 105, "failur": 105, "issu": 105, "boolean": 106, "connect": [106, 109], "preexist": 106, "nucleic": 107, "acid": 107, "nucleobas": 107, "sugar": 107, "coverag": 108, "continu": 108, "integr": 108, "tool": 108, "action": 108, "azur": 108, "codecov": 108, "convent": 108, "assert": 108, "except": 108, "warn": 108, "fail": 108, "skip": 108, "fixtur": 108, "same": 108, "directori": 108, "canon": 109, "valu": 109, "level": 109, "object": 109, "convers": 113, "speed": 113, "forc": 113, "energi": 113, "scratch": 114, "properti": 114}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinxcontrib.bibtex": 9, "sphinx": 57}, "alltitles": {"Advanced topology concepts": [[0, "advanced-topology-concepts"]], "Adding a Residue or Segment to a Universe": [[0, "adding-a-residue-or-segment-to-a-universe"]], "Molecules": [[0, "molecules"]], "Adding custom TopologyAttrs": [[0, "adding-custom-topologyattrs"]], "AtomGroup": [[1, "atomgroup"]], "Creating an AtomGroup": [[1, "creating-an-atomgroup"]], "Atom selection language": [[1, "atom-selection-language"], [106, "atom-selection-language"]], "Indexing and slicing": [[1, "indexing-and-slicing"]], "Group operators and set methods": [[1, "group-operators-and-set-methods"]], "Groupby and split": [[1, "groupby-and-split"]], "Constructing from Atoms": [[1, "constructing-from-atoms"]], "Order and uniqueness": [[1, "order-and-uniqueness"]], "Empty AtomGroups": [[1, "empty-atomgroups"]], "Dynamically updating AtomGroups": [[1, "dynamically-updating-atomgroups"]], "Methods": [[1, "methods"]], "Contributing to MDAnalysis": [[2, "contributing-to-mdanalysis"], [16, "Contributing-to-MDAnalysis"]], "Where to start?": [[2, "where-to-start"]], "Version control, Git, and GitHub": [[2, "version-control-git-and-github"]], "Getting started with Git": [[2, "getting-started-with-git"]], "Contributing to the main codebase": [[3, "contributing-to-the-main-codebase"]], "Working with the code": [[3, "working-with-the-code"]], "Forking": [[3, "forking"]], "Creating a development environment": [[3, "creating-a-development-environment"], [4, "creating-a-development-environment"]], "With conda": [[3, "with-conda"], [3, "id1"]], "With pip and virtualenv": [[3, "with-pip-and-virtualenv"], [3, "id2"]], "On a Mac": [[3, "on-a-mac"]], "Building MDAnalysis": [[3, "building-mdanalysis"]], "Branches in MDAnalysis": [[3, "branches-in-mdanalysis"]], "Creating a branch": [[3, "creating-a-branch"]], "Writing new code": [[3, "writing-new-code"]], "Code formatting in Python": [[3, "code-formatting-in-python"]], "Modules and dependencies": [[3, "modules-and-dependencies"]], "Developing in Cython": [[3, "developing-in-cython"]], "Testing your code": [[3, "testing-your-code"]], "Documenting your code": [[3, "documenting-your-code"]], "Ensure PEP8 compliance (mandatory) and format your code with Darker (optional)": [[3, "ensure-pep8-compliance-mandatory-and-format-your-code-with-darker-optional"]], "Adding your code to MDAnalysis": [[3, "adding-your-code-to-mdanalysis"]], "Committing your code": [[3, "committing-your-code"]], "Pushing your code to GitHub": [[3, "pushing-your-code-to-github"]], "Rebasing your code": [[3, "rebasing-your-code"]], "Creating a pull request": [[3, "creating-a-pull-request"]], "Working with the code documentation": [[3, "working-with-the-code-documentation"]], "Building the documentation": [[3, "building-the-documentation"]], "Where to write docstrings": [[3, "where-to-write-docstrings"]], "Guidelines for writing docstrings": [[3, "guidelines-for-writing-docstrings"]], "Documenting changes": [[3, "documenting-changes"]], "Writing docs for abstract base classes": [[3, "writing-docs-for-abstract-base-classes"]], "Adding your documentation to MDAnalysis": [[3, "adding-your-documentation-to-mdanalysis"]], "Viewing the documentation interactively": [[3, "viewing-the-documentation-interactively"]], "Contributing to the user guide": [[4, "contributing-to-the-user-guide"]], "Forking and cloning the User Guide": [[4, "forking-and-cloning-the-user-guide"]], "Building the user guide": [[4, "building-the-user-guide"]], "Saving state in Jupyter notebooks": [[4, "saving-state-in-jupyter-notebooks"]], "Test with pytest and nbval": [[4, "test-with-pytest-and-nbval"]], "Sanitization": [[4, "sanitization"]], "On the hole2 notebook": [[4, "on-the-hole2-notebook"]], "Adding changes to the UserGuide": [[4, "adding-changes-to-the-userguide"]], "Automatically building documentation": [[4, "automatically-building-documentation"]], "Using pre-commit hooks": [[4, "using-pre-commit-hooks"]], "Example data": [[5, "example-data"]], "MDAnalysisTests": [[5, "mdanalysistests"]], "MDAnalysisData": [[5, "mdanalysisdata"]], "Examples": [[6, "examples"]], "General": [[6, null]], "Analysis": [[6, null], [7, "analysis"], [53, "Analysis"]], "Imports and dependencies": [[7, "imports-and-dependencies"]], "Alignments and RMS fitting": [[7, "alignments-and-rms-fitting"], [8, "alignments-and-rms-fitting"]], "Distances and contacts": [[7, "distances-and-contacts"], [17, "distances-and-contacts"]], "Trajectory similarity": [[7, "trajectory-similarity"], [41, "trajectory-similarity"]], "Structure": [[7, "structure"], [35, "structure"]], "Volumetric analyses": [[7, "volumetric-analyses"], [47, "volumetric-analyses"]], "Dimension reduction": [[7, "dimension-reduction"], [32, "dimension-reduction"]], "Polymers and membranes": [[7, "polymers-and-membranes"], [29, "polymers-and-membranes"]], "Hydrogen Bond Analysis": [[7, "hydrogen-bond-analysis"], [25, "hydrogen-bond-analysis"]], "Aligning a structure to another": [[9, "Aligning-a-structure-to-another"]], "Loading files": [[9, "Loading-files"], [10, "Loading-files"], [11, "Loading-files"], [12, "Loading-files"], [13, "Loading-files"], [14, "Loading-files"], [15, "Loading-files"], [16, "Loading-files"], [18, "Loading-files"], [19, "Loading-files"], [20, "Loading-files"], [21, "Loading-files"], [22, "Loading-files"], [23, "Loading-files"], [24, "Loading-files"], [26, "Loading-files"], [27, "Loading-files"], [28, "Loading-files"], [31, "Loading-files"], [33, "Loading-files"], [34, "Loading-files"], [36, "Loading-files"], [37, "Loading-files"], [38, "Loading-files"], [39, "Loading-files"], [40, "Loading-files"], [42, "Loading-files"], [43, "Loading-files"], [44, "Loading-files"], [45, "Loading-files"], [46, "Loading-files"], [48, "Loading-files"], [49, "Loading-files"], [55, "Loading-files"]], "Aligning a structure with align.alignto": [[9, "Aligning-a-structure-with-align.alignto"]], "References": [[9, "References"], [10, "References"], [11, "References"], [12, "References"], [13, "References"], [14, "References"], [15, "References"], [16, "References"], [18, "References"], [19, "References"], [20, "References"], [21, "References"], [22, "References"], [23, "References"], [24, "References"], [26, "References"], [27, "References"], [28, "References"], [30, "References"], [31, "References"], [33, "References"], [34, "References"], [36, "References"], [37, "References"], [38, "References"], [39, "References"], [40, "References"], [42, "References"], [43, "References"], [44, "References"], [45, "References"], [45, "id5"], [46, "References"], [48, "References"], [49, "References"], [50, "References"], [52, "References"], [53, "References"], [55, "References"], [104, "references"]], "Aligning a trajectory to a reference": [[10, "Aligning-a-trajectory-to-a-reference"]], "Aligning a trajectory with AlignTraj": [[10, "Aligning-a-trajectory-with-AlignTraj"]], "Copying coordinates into a new Universe": [[10, "Copying-coordinates-into-a-new-Universe"]], "Writing trajectories to a file": [[10, "Writing-trajectories-to-a-file"]], "Aligning a trajectory to itself": [[11, "Aligning-a-trajectory-to-itself"]], "Aligning a trajectory to the first frame": [[11, "Aligning-a-trajectory-to-the-first-frame"]], "Aligning a trajectory to the third frame": [[11, "Aligning-a-trajectory-to-the-third-frame"]], "Calculating the pairwise RMSD of a trajectory": [[12, "Calculating-the-pairwise-RMSD-of-a-trajectory"]], "Background": [[12, "Background"], [13, "Background"], [14, "Background"], [15, "Background"], [18, "Background"], [19, "Background"], [20, "Background"], [21, "Background"], [30, "Background"]], "Pairwise RMSD of a trajectory to itself": [[12, "Pairwise-RMSD-of-a-trajectory-to-itself"]], "Pairwise RMSD between two trajectories": [[12, "Pairwise-RMSD-between-two-trajectories"]], "Calculating the root mean square deviation of atomic structures": [[13, "Calculating-the-root-mean-square-deviation-of-atomic-structures"]], "RMSD between two sets of coordinates": [[13, "RMSD-between-two-sets-of-coordinates"]], "RMSD of a Universe with multiple selections": [[13, "RMSD-of-a-Universe-with-multiple-selections"]], "Plotting the data": [[13, "Plotting-the-data"]], "RMSD of an AtomGroup with multiple selections": [[13, "RMSD-of-an-AtomGroup-with-multiple-selections"]], "Weighted RMSD of a trajectory": [[13, "Weighted-RMSD-of-a-trajectory"]], "Mass": [[13, "Mass"]], "Custom weights": [[13, "Custom-weights"]], "Calculating the root mean square fluctuation over a trajectory": [[14, "Calculating-the-root-mean-square-fluctuation-over-a-trajectory"]], "Creating an average structure": [[14, "Creating-an-average-structure"]], "Aligning the trajectory to a reference": [[14, "Aligning-the-trajectory-to-a-reference"]], "Calculating RMSF": [[14, "Calculating-RMSF"]], "Plotting RMSF": [[14, "Plotting-RMSF"]], "Visualising RMSF as B-factors": [[14, "Visualising-RMSF-as-B-factors"]], "Parallelizing analysis": [[15, "Parallelizing-analysis"]], "Radius of gyration": [[15, "Radius-of-gyration"], [16, "Radius-of-gyration"]], "Serial Analysis": [[15, "Serial-Analysis"]], "Parallelization in a simple per-frame fashion": [[15, "Parallelization-in-a-simple-per-frame-fashion"]], "Frame-wise form of the function": [[15, "Frame-wise-form-of-the-function"]], "Parallelization with multiprocessing": [[15, "Parallelization-with-multiprocessing"]], "Parallelization with dask": [[15, "Parallelization-with-dask"]], "Parallelization in a split-apply-combine fashion": [[15, "Parallelization-in-a-split-apply-combine-fashion"]], "Block analysis function": [[15, "Block-analysis-function"]], "Split the trajectory": [[15, "Split-the-trajectory"]], "Apply the analysis per block": [[15, "Apply-the-analysis-per-block"]], "Combine the results": [[15, "Combine-the-results"]], "Other possible parallelism approaches for multiple analyses": [[15, "Other-possible-parallelism-approaches-for-multiple-analyses"]], "See Also": [[15, "See-Also"]], "Writing your own trajectory analysis": [[16, "Writing-your-own-trajectory-analysis"]], "Creating an analysis from a function": [[16, "Creating-an-analysis-from-a-function"]], "Transforming a function into a class": [[16, "Transforming-a-function-into-a-class"]], "Creating your own class": [[16, "Creating-your-own-class"]], "1. Define __init__": [[16, "1.-Define-__init__"]], "2. Define your analysis in _single_frame() and other methods": [[16, "2.-Define-your-analysis-in-_single_frame()-and-other-methods"]], "Write your own native contacts analysis method": [[18, "Write-your-own-native-contacts-analysis-method"]], "Defining salt bridges": [[18, "Defining-salt-bridges"]], "Define your own function": [[18, "Define-your-own-function"]], "Plotting": [[18, "Plotting"], [19, "Plotting"], [19, "id6"], [19, "id7"], [20, "Plotting"], [21, "Plotting"], [22, "Plotting"], [22, "id4"], [23, "Plotting"], [24, "Plotting"], [24, "id4"], [30, "Plotting"], [30, "id8"], [37, "Plotting"], [42, "Plotting"], [42, "id5"], [42, "id6"], [44, "Plotting"], [44, "id5"], [44, "id6"], [45, "Plotting"], [46, "Plotting"], [46, "id5"]], "Fraction of native contacts over a trajectory": [[19, "Fraction-of-native-contacts-over-a-trajectory"]], "Defining the groups for contact analysis": [[19, "Defining-the-groups-for-contact-analysis"], [21, "Defining-the-groups-for-contact-analysis"]], "Hard cutoff with a single reference": [[19, "Hard-cutoff-with-a-single-reference"]], "Radius cutoff": [[19, "Radius-cutoff"]], "Soft cutoff and multiple references": [[19, "Soft-cutoff-and-multiple-references"]], "Multiple references": [[19, "Multiple-references"]], "Soft cutoff": [[19, "Soft-cutoff"]], "Q1 vs Q2 contact analysis": [[20, "Q1-vs-Q2-contact-analysis"]], "Calculating Q1 vs Q2": [[20, "Calculating-Q1-vs-Q2"]], "Contact analysis: number of contacts within a cutoff": [[21, "Contact-analysis:-number-of-contacts-within-a-cutoff"]], "Calculating number of contacts within a cutoff": [[21, "Calculating-number-of-contacts-within-a-cutoff"]], "Atom-wise distances between matching AtomGroups": [[22, "Atom-wise-distances-between-matching-AtomGroups"]], "Calculating the distance between CA atoms": [[22, "Calculating-the-distance-between-CA-atoms"]], "Calculating the distance with periodic boundary conditions": [[22, "Calculating-the-distance-with-periodic-boundary-conditions"]], "All distances between two selections": [[23, "All-distances-between-two-selections"]], "Calculating atom-to-atom distances between non-matching coordinate arrays": [[23, "Calculating-atom-to-atom-distances-between-non-matching-coordinate-arrays"]], "Plotting distance as a heatmap": [[23, "Plotting-distance-as-a-heatmap"]], "Calculating residue-to-residue distances": [[23, "Calculating-residue-to-residue-distances"]], "All distances within a selection": [[24, "All-distances-within-a-selection"]], "Calculating atom-wise distances": [[24, "Calculating-atom-wise-distances"]], "Calculating distances for each residue": [[24, "Calculating-distances-for-each-residue"]], "Calculating hydrogen bonds: the basics": [[26, "Calculating-hydrogen-bonds:-the-basics"]], "Hydrogen bonds": [[26, "Hydrogen-bonds"]], "Find water-water hydrogen bonds": [[26, "Find-water-water-hydrogen-bonds"]], "Accessing the results": [[26, "Accessing-the-results"]], "Helper functions": [[26, "Helper-functions"]], "Further analysis": [[26, "Further-analysis"]], "Store data": [[26, "Store-data"]], "Calculating hydrogen bond lifetimes": [[27, "Calculating-hydrogen-bond-lifetimes"]], "Find all hydrogen bonds": [[27, "Find-all-hydrogen-bonds"], [28, "Find-all-hydrogen-bonds"]], "Calculate hydrogen bond lifetimes": [[27, "Calculate-hydrogen-bond-lifetimes"]], "Calculating the time constant": [[27, "Calculating-the-time-constant"]], "Intermittent lifetime": [[27, "Intermittent-lifetime"]], "Hydrogen bond lifetime of individual hydrogen bonds": [[27, "Hydrogen-bond-lifetime-of-individual-hydrogen-bonds"]], "Calculating hydrogen bonds: advanced selections": [[28, "Calculating-hydrogen-bonds:-advanced-selections"]], "Use guess_acceptors and guess_hydrogens to create atom selections": [[28, "Use-guess_acceptors-and-guess_hydrogens-to-create-atom-selections"]], "More advanced selections": [[28, "More-advanced-selections"]], "Hydrogen bonds between specific groups": [[28, "Hydrogen-bonds-between-specific-groups"]], "Analysing pore dimensions with HOLE2": [[30, "Analysing-pore-dimensions-with-HOLE2"]], "Using HOLE with a PDB file": [[30, "Using-HOLE-with-a-PDB-file"]], "Using HOLE with a trajectory": [[30, "Using-HOLE-with-a-trajectory"]], "Working with the data": [[30, "Working-with-the-data"]], "Visualising the VMD surface": [[30, "Visualising-the-VMD-surface"]], "Ordering HOLE profiles with an order parameter": [[30, "Ordering-HOLE-profiles-with-an-order-parameter"]], "Deleting HOLE files": [[30, "Deleting-HOLE-files"]], "Determining the persistence length of a polymer": [[31, "Determining-the-persistence-length-of-a-polymer"]], "Choosing the chains and backbone atoms": [[31, "Choosing-the-chains-and-backbone-atoms"]], "Calculating the persistence length": [[31, "Calculating-the-persistence-length"]], "Non-linear dimension reduction to diffusion maps": [[33, "Non-linear-dimension-reduction-to-diffusion-maps"]], "Diffusion maps": [[33, "Diffusion-maps"]], "Principal component analysis of a trajectory": [[34, "Principal-component-analysis-of-a-trajectory"]], "Principal component analysis": [[34, "Principal-component-analysis"]], "Visualising projections into a reduced dimensional space": [[34, "Visualising-projections-into-a-reduced-dimensional-space"]], "Measuring convergence with cosine content": [[34, "Measuring-convergence-with-cosine-content"]], "Average radial distribution functions": [[36, "Average-radial-distribution-functions"]], "Calculating the average radial distribution function for two groups of atoms": [[36, "Calculating-the-average-radial-distribution-function-for-two-groups-of-atoms"]], "Calculating the average radial distribution function for a group of atoms to itself": [[36, "Calculating-the-average-radial-distribution-function-for-a-group-of-atoms-to-itself"]], "Protein dihedral angle analysis": [[37, "Protein-dihedral-angle-analysis"]], "Selecting dihedral atom groups": [[37, "Selecting-dihedral-atom-groups"]], "Calculating dihedral angles": [[37, "Calculating-dihedral-angles"]], "Ramachandran analysis": [[37, "Ramachandran-analysis"]], "Janin analysis": [[37, "Janin-analysis"]], "Elastic network analysis": [[38, "Elastic-network-analysis"]], "Using a Gaussian network model": [[38, "Using-a-Gaussian-network-model"]], "Using a Gaussian network model with only close contacts": [[38, "Using-a-Gaussian-network-model-with-only-close-contacts"]], "Helix analysis": [[39, "Helix-analysis"], [39, "id6"]], "Running the analysis": [[39, "Running-the-analysis"]], "Calculating the RDF atom-to-atom": [[40, "Calculating-the-RDF-atom-to-atom"]], "Calculating the site-specific radial distribution function": [[40, "Calculating-the-site-specific-radial-distribution-function"]], "The site-specific RDF without densities": [[40, "The-site-specific-RDF-without-densities"]], "Calculating the Clustering Ensemble Similarity between ensembles": [[42, "Calculating-the-Clustering-Ensemble-Similarity-between-ensembles"]], "Calculating clustering similarity with default settings": [[42, "Calculating-clustering-similarity-with-default-settings"]], "Calculating clustering similarity with one method": [[42, "Calculating-clustering-similarity-with-one-method"]], "Calculating clustering similarity with multiple methods": [[42, "Calculating-clustering-similarity-with-multiple-methods"]], "Trying out different clustering parameters": [[42, "Trying-out-different-clustering-parameters"]], "Estimating the error in a clustering ensemble similarity analysis": [[42, "Estimating-the-error-in-a-clustering-ensemble-similarity-analysis"]], "Evaluating convergence": [[43, "Evaluating-convergence"]], "Evaluating convergence with similarity measures": [[43, "Evaluating-convergence-with-similarity-measures"]], "Using default arguments with clustering ensemble similarity": [[43, "Using-default-arguments-with-clustering-ensemble-similarity"]], "Comparing different clustering methods": [[43, "Comparing-different-clustering-methods"]], "Using default arguments with dimension reduction ensemble similarity": [[43, "Using-default-arguments-with-dimension-reduction-ensemble-similarity"]], "Comparing different dimensionality reduction methods": [[43, "Comparing-different-dimensionality-reduction-methods"]], "Calculating the Dimension Reduction Ensemble Similarity between ensembles": [[44, "Calculating-the-Dimension-Reduction-Ensemble-Similarity-between-ensembles"]], "Calculating dimension reduction similarity with default settings": [[44, "Calculating-dimension-reduction-similarity-with-default-settings"]], "Calculating dimension reduction similarity with one method": [[44, "Calculating-dimension-reduction-similarity-with-one-method"]], "Calculating dimension reduction similarity with multiple methods": [[44, "Calculating-dimension-reduction-similarity-with-multiple-methods"]], "Trying out different dimension reduction parameters": [[44, "Trying-out-different-dimension-reduction-parameters"]], "Estimating the error in a dimension reduction ensemble similarity analysis": [[44, "Estimating-the-error-in-a-dimension-reduction-ensemble-similarity-analysis"]], "Calculating the Harmonic Ensemble Similarity between ensembles": [[45, "Calculating-the-Harmonic-Ensemble-Similarity-between-ensembles"]], "Calculating harmonic similarity": [[45, "Calculating-harmonic-similarity"]], "Comparing the geometric similarity of trajectories": [[46, "Comparing-the-geometric-similarity-of-trajectories"]], "Aligning trajectories": [[46, "Aligning-trajectories"]], "Generating paths": [[46, "Generating-paths"]], "Hausdorff method": [[46, "Hausdorff-method"]], "Discrete Fr\u00e9chet distances": [[46, "Discrete-Fr\u00e9chet-distances"]], "Calculating the solvent density around a protein": [[48, "Calculating-the-solvent-density-around-a-protein"]], "Centering, aligning, and making molecules whole with on-the-fly transformations": [[48, "Centering,-aligning,-and-making-molecules-whole-with-on-the-fly-transformations"]], "Analysing the density of water around the protein": [[48, "Analysing-the-density-of-water-around-the-protein"]], "Visualisation": [[48, "Visualisation"]], "matplotlib (3D static plot)": [[48, "matplotlib-(3D-static-plot)"]], "nglview (interactive)": [[48, "nglview-(interactive)"]], "scikit-image (triangulated surface)": [[48, "scikit-image-(triangulated-surface)"]], "pyvista (3D surface)": [[48, "pyvista-(3D-surface)"]], "2D averaging": [[48, "2D-averaging"]], "Computing mass and charge density on each axis": [[49, "Computing-mass-and-charge-density-on-each-axis"]], "Constructing, modifying, and adding to a Universe": [[50, "Constructing,-modifying,-and-adding-to-a-Universe"]], "Creating and populating a Universe with water": [[50, "Creating-and-populating-a-Universe-with-water"]], "Creating a blank Universe": [[50, "Creating-a-blank-Universe"]], "Adding topology attributes": [[50, "Adding-topology-attributes"]], "Adding positions": [[50, "Adding-positions"]], "Adding bonds": [[50, "Adding-bonds"]], "Merging with a protein": [[50, "Merging-with-a-protein"]], "Adding a new segment": [[50, "Adding-a-new-segment"]], "Tiling into a larger Universe": [[50, "Tiling-into-a-larger-Universe"]], "Acknowledgments": [[50, "Acknowledgments"]], "Other": [[51, "other"]], "Using ParmEd with MDAnalysis and OpenMM to simulate a selection of atoms": [[52, "Using-ParmEd-with-MDAnalysis-and-OpenMM-to-simulate-a-selection-of-atoms"]], "Loading files: the difference between ParmEd and MDAnalysis": [[52, "Loading-files:-the-difference-between-ParmEd-and-MDAnalysis"]], "Using MDAnalysis to select atoms": [[52, "Using-MDAnalysis-to-select-atoms"]], "Using ParmEd and OpenMM to create a simulation system": [[52, "Using-ParmEd-and-OpenMM-to-create-a-simulation-system"]], "Quick start guide": [[53, "Quick-start-guide"]], "Overview": [[53, "Overview"]], "Loading a structure or trajectory": [[53, "Loading-a-structure-or-trajectory"]], "Working with groups of atoms": [[53, "Working-with-groups-of-atoms"]], "Selecting atoms": [[53, "Selecting-atoms"]], "Getting atom information from AtomGroups": [[53, "Getting-atom-information-from-AtomGroups"]], "AtomGroup positions and methods": [[53, "AtomGroup-positions-and-methods"]], "Working with trajectories": [[53, "Working-with-trajectories"]], "Dynamic selection": [[53, "Dynamic-selection"]], "Writing out coordinates": [[53, "Writing-out-coordinates"]], "Single frame": [[53, "Single-frame"]], "Trajectories": [[53, "Trajectories"], [56, "trajectories"], [111, "trajectories"]], "RMSD": [[53, "RMSD"]], "Automatic citations with duecredit": [[53, "Automatic-citations-with-duecredit"]], "Transformations": [[54, "transformations"]], "Centering a trajectory in the box": [[55, "Centering-a-trajectory-in-the-box"]], "Before transformation": [[55, "Before-transformation"]], "Unwrapping the protein": [[55, "Unwrapping-the-protein"]], "Centering in the box": [[55, "Centering-in-the-box"]], "Wrapping the solvent back into the box": [[55, "Wrapping-the-solvent-back-into-the-box"]], "Doing all this on-the-fly": [[55, "Doing-all-this-on-the-fly"]], "Frequently asked questions": [[56, "frequently-asked-questions"]], "Why do the atom positions change over trajectories?": [[56, "why-do-the-atom-positions-change-over-trajectories"]], "Auxiliary files": [[57, "auxiliary-files"]], "Supported formats": [[57, "supported-formats"]], "XVG Files": [[57, "xvg-files"]], "Reading data directly": [[57, "reading-data-directly"]], "Loading data into a Universe": [[57, "loading-data-into-a-universe"]], "Passing arguments to auxiliary data": [[57, "passing-arguments-to-auxiliary-data"]], "Iterating over auxiliary data": [[57, "iterating-over-auxiliary-data"]], "Accessing auxiliary attributes": [[57, "accessing-auxiliary-attributes"]], "Recreating auxiliaries": [[57, "recreating-auxiliaries"]], "EDR Files": [[57, "edr-files"]], "Standalone Usage": [[57, "standalone-usage"]], "Unit Handling": [[57, "unit-handling"]], "Use with Trajectories": [[57, "use-with-trajectories"]], "Selecting Trajectory Frames Based on Auxiliary Data": [[57, "selecting-trajectory-frames-based-on-auxiliary-data"]], "Memory Usage": [[57, "memory-usage"]], "Coordinates": [[58, "coordinates"], [61, "coordinates"]], "Table of supported coordinate readers and the information read": [[58, "id2"], [61, "id12"]], "Format reference": [[59, "format-reference"]], "Guessing": [[60, "guessing"]], "Masses": [[60, "masses"]], "Types": [[60, "types"]], "Bonds, Angles, Dihedrals, Impropers": [[60, "bonds-angles-dihedrals-impropers"]], "Format overview": [[61, "format-overview"]], "Table of all supported formats in MDAnalysis": [[61, "id10"]], "Topology": [[61, "topology"], [97, "topology"]], "Table of supported topology parsers and the attributes read": [[61, "id11"], [97, "id1"]], "chemfiles (chemfiles Trajectory or file)": [[62, "chemfiles-chemfiles-trajectory-or-file"]], "CONFIG (DL_Poly Config)": [[63, "config-dl-poly-config"]], "HISTORY (DL_Poly Config)": [[63, "history-dl-poly-config"]], "COOR, NAMBDIN (NAMD binary restart files)": [[64, "coor-nambdin-namd-binary-restart-files"]], "CRD (CHARMM CARD files)": [[65, "crd-charmm-card-files"]], "Reading in": [[65, "reading-in"], [66, "reading-in"], [67, "reading-in"], [70, "reading-in"], [71, "reading-in"], [72, "reading-in"], [76, "reading-in"], [79, "reading-in"], [81, "reading-in"], [82, "reading-in"], [83, "reading-in"], [84, "reading-in"], [85, "reading-in"], [88, "reading-in"], [89, "reading-in"], [94, "reading-in"], [95, "reading-in"]], "Writing out": [[65, "writing-out"], [66, "writing-out"], [67, "writing-out"], [71, "writing-out"], [79, "writing-out"], [81, "writing-out"], [82, "writing-out"], [83, "writing-out"], [89, "writing-out"]], "DATA (LAMMPS)": [[66, "data-lammps"]], "DCD (CHARMM, NAMD, or LAMMPS trajectory)": [[67, "dcd-charmm-namd-or-lammps-trajectory"]], "DCD (Flexible LAMMPS trajectory)": [[68, "dcd-flexible-lammps-trajectory"]], "DMS (Desmond Molecular Structure files)": [[69, "dms-desmond-molecular-structure-files"]], "GMS (Gamess trajectory)": [[70, "gms-gamess-trajectory"]], "GRO (GROMACS structure file)": [[71, "gro-gromacs-structure-file"]], "GSD (HOOMD GSD file)": [[72, "gsd-hoomd-gsd-file"]], "IN, FHIAIMS (FHI-aims input files)": [[73, "in-fhiaims-fhi-aims-input-files"]], "INPCRD, RESTRT (AMBER restart files)": [[74, "inpcrd-restrt-amber-restart-files"]], "ITP (GROMACS portable topology files)": [[75, "itp-gromacs-portable-topology-files"]], "LAMMPSDUMP (LAMMPS ascii dump file)": [[76, "lammpsdump-lammps-ascii-dump-file"]], "MMTF (Macromolecular Transmission Format)": [[77, "mmtf-macromolecular-transmission-format"]], "MOL2 (Tripos structure)": [[78, "mol2-tripos-structure"]], "MOL2 specification": [[78, "mol2-specification"]], "NCDF, NC (AMBER NetCDF trajectory)": [[79, "ncdf-nc-amber-netcdf-trajectory"]], "ParmEd (ParmEd Structure)": [[80, "parmed-parmed-structure"]], "PDB, ENT (Standard PDB file)": [[81, "pdb-ent-standard-pdb-file"]], "PDB specification": [[81, "pdb-specification"]], "CRYST1 fields": [[81, "id1"]], "ATOM/HETATM fields": [[81, "id2"]], "PDBQT (Autodock structure)": [[82, "pdbqt-autodock-structure"]], "PDBQT specification": [[82, "pdbqt-specification"]], "PDB format with AutoDOCK extensions for the PDBQT format.": [[82, "id1"]], "PQR file (PDB2PQR / APBS)": [[83, "pqr-file-pdb2pqr-apbs"]], "PQR specification": [[83, "pqr-specification"]], "PSF (CHARMM, NAMD, or XPLOR protein structure file)": [[84, "psf-charmm-namd-or-xplor-protein-structure-file"]], "PSF specification": [[84, "psf-specification"]], "TNG (Trajectory Next Generation)": [[85, "tng-trajectory-next-generation"]], "TOP, PRMTOP, PARM7 (AMBER topology)": [[86, "top-prmtop-parm7-amber-topology"]], "AMBER specification": [[86, "amber-specification"]], "Attributes parsed from AMBER keywords": [[86, "id1"]], "Developer notes": [[86, "developer-notes"], [87, "developer-notes"], [89, "developer-notes"], [91, "developer-notes"]], "TPR (GROMACS run topology files)": [[87, "tpr-gromacs-run-topology-files"]], "Supported versions": [[87, "supported-versions"]], "TPR format versions and generations read by MDAnalysis.topology.TPRParser.parse().": [[87, "id1"]], "TPR specification": [[87, "tpr-specification"]], "segid and chainID": [[87, "segid-and-chainid"]], "Bonds": [[87, "bonds"]], "GROMACS entries used to create bonds.": [[87, "id2"]], "GROMACS entries used to create angles.": [[87, "id3"]], "GROMACS entries used to create dihedrals.": [[87, "id4"]], "GROMACS entries used to create improper dihedrals.": [[87, "id5"]], "TRJ, MDCRD, CRDBOX (AMBER ASCII trajectory)": [[88, "trj-mdcrd-crdbox-amber-ascii-trajectory"]], "TRR (GROMACS lossless trajectory file)": [[89, "trr-gromacs-lossless-trajectory-file"]], "TRZ (IBIsCO and YASP trajectory)": [[90, "trz-ibisco-and-yasp-trajectory"]], "TXYZ, ARC (Tinker)": [[91, "txyz-arc-tinker"]], "XML (HOOMD)": [[92, "xml-hoomd"]], "XPDB (Extended PDB file)": [[93, "xpdb-extended-pdb-file"]], "XTC (GROMACS compressed trajectory file)": [[94, "xtc-gromacs-compressed-trajectory-file"]], "XYZ trajectory": [[95, "xyz-trajectory"]], "XYZ specification": [[95, "xyz-specification"]], "Note": [[95, "note"]], "Selection exporters": [[96, "selection-exporters"]], "Supported selection exporters": [[96, "id2"]], "Writing selections": [[96, "writing-selections"]], "Single AtomGroup": [[96, "single-atomgroup"]], "Multiple selections": [[96, "multiple-selections"]], "Reading in selections": [[96, "reading-in-selections"]], "Groups of atoms": [[98, "groups-of-atoms"]], "Residues and Segments": [[98, "residues-and-segments"]], "Use case: Sequence of residues by segment": [[98, "use-case-sequence-of-residues-by-segment"]], "Use case: Atoms list grouped by residues": [[98, "use-case-atoms-list-grouped-by-residues"]], "Fragments": [[98, "fragments"]], "Welcome to MDAnalysis User Guide\u2019s documentation!": [[99, "welcome-to-mdanalysis-user-guide-s-documentation"]], "Why MDAnalysis?": [[99, "why-mdanalysis"]], "Participating": [[99, "participating"]], "Communications": [[99, "communications"]], "Installation": [[100, "installation"]], "conda": [[100, "conda"]], "pip": [[100, "pip"]], "Development versions": [[100, "development-versions"]], "Testing": [[100, "testing"]], "Custom compiler flags and optimised installations": [[100, "custom-compiler-flags-and-optimised-installations"]], "Additional datasets": [[100, "additional-datasets"]], "Module imports in MDAnalysis": [[101, "module-imports-in-mdanalysis"]], "General rules for importing": [[101, "general-rules-for-importing"]], "Module imports in MDAnalysis.analysis": [[101, "module-imports-in-mdanalysis-analysis"]], "Module imports in the test suite": [[101, "module-imports-in-the-test-suite"]], "Module dependencies in the code": [[101, "module-dependencies-in-the-code"]], "List of core module dependencies": [[101, "list-of-core-module-dependencies"]], "Modules in the \u201ccore\u201d": [[101, "modules-in-the-core"]], "Optional modules in MDAnalysis.analysis and MDAnalysis.visualization": [[101, "optional-modules-in-mdanalysis-analysis-and-mdanalysis-visualization"]], "Preparing a release": [[102, "preparing-a-release"]], "Release policy and release numbering": [[102, "release-policy-and-release-numbering"]], "Typical workflow for preparing a release": [[102, "typical-workflow-for-preparing-a-release"]], "Summary of tasks": [[102, "summary-of-tasks"]], "Getting the develop branch ready for a release": [[102, "getting-the-develop-branch-ready-for-a-release"]], "Packaging the release": [[102, "packaging-the-release"]], "Completing the release": [[102, "completing-the-release"]], "Manually upload Cirrus CI wheels (temporary)": [[102, "manually-upload-cirrus-ci-wheels-temporary"]], "Update conda-forge packages": [[102, "update-conda-forge-packages"]], "Create a release of the UserGuide": [[102, "create-a-release-of-the-userguide"]], "Create a blog post outlining the release": [[102, "create-a-blog-post-outlining-the-release"]], "Increment develop branch files ready for the next version": [[102, "increment-develop-branch-files-ready-for-the-next-version"]], "Clean up old developer builds of the documentation": [[102, "clean-up-old-developer-builds-of-the-documentation"]], "Reading and writing files": [[103, "reading-and-writing-files"]], "Input": [[103, "input"]], "Reading multiple trajectories": [[103, "reading-multiple-trajectories"]], "Trajectory formats": [[103, "trajectory-formats"]], "In-memory trajectories": [[103, "in-memory-trajectories"]], "Reading trajectories into memory": [[103, "reading-trajectories-into-memory"]], "Transferring trajectories into memory": [[103, "transferring-trajectories-into-memory"]], "Building trajectories in memory": [[103, "building-trajectories-in-memory"]], "In-memory trajectories of an atom selection": [[103, "in-memory-trajectories-of-an-atom-selection"]], "Output": [[103, "output"]], "Frames and trajectories": [[103, "frames-and-trajectories"]], "Pickling": [[103, "pickling"]], "Citations using Duecredit": [[104, "citations-using-duecredit"]], "MDAnalysis Release Notes": [[105, "mdanalysis-release-notes"]], "Release 2.6.1 of MDAnalysis": [[105, "release-2-6-1-of-mdanalysis"]], "Bug fixes and changes": [[105, "bug-fixes-and-changes"]], "New Contributors": [[105, "new-contributors"], [105, "id1"], [105, "id5"], [105, "id13"]], "Release 2.6.0 of MDAnalysis": [[105, "release-2-6-0-of-mdanalysis"]], "Major changes:": [[105, "major-changes"], [105, "id2"], [105, "id8"], [105, "id14"], [105, "id19"], [105, "id24"], [105, "id30"]], "Fixes:": [[105, "fixes"], [105, "id3"], [105, "id9"], [105, "id15"], [105, "id21"], [105, "id26"], [105, "id32"]], "Enhancements:": [[105, "enhancements"], [105, "id16"], [105, "id20"], [105, "id25"], [105, "id31"]], "Changes:": [[105, "changes"], [105, "id4"], [105, "id11"], [105, "id17"], [105, "id22"], [105, "id27"], [105, "id33"]], "Deprecations:": [[105, "deprecations"], [105, "id12"], [105, "id18"], [105, "id23"], [105, "id28"], [105, "id34"]], "Release 2.5.0 of MDAnalysis": [[105, "release-2-5-0-of-mdanalysis"]], "Enchancements:": [[105, "enchancements"], [105, "id10"]], "Release 2.4.3 of MDAnalysis": [[105, "release-2-4-3-of-mdanalysis"]], "Bug fixes": [[105, "bug-fixes"], [105, "id6"], [105, "id7"]], "Release 2.4.2 of MDAnalysis": [[105, "release-2-4-2-of-mdanalysis"]], "Release 2.4.1 of MDAnalysis": [[105, "release-2-4-1-of-mdanalysis"]], "Release 2.4.0 of MDAnalysis": [[105, "release-2-4-0-of-mdanalysis"]], "Release 2.3.0 of MDAnalysis": [[105, "release-2-3-0-of-mdanalysis"]], "CZI EOSS Performance Improvements:": [[105, "czi-eoss-performance-improvements"]], "Release 2.2.0 of MDAnalysis": [[105, "release-2-2-0-of-mdanalysis"]], "Known test failures:": [[105, "known-test-failures"], [105, "id29"]], "Release 2.1.0 of MDAnalysis": [[105, "release-2-1-0-of-mdanalysis"]], "Release 2.0.0 of MDAnalysis": [[105, "release-2-0-0-of-mdanalysis"]], "Notes:": [[105, "notes"]], "Known issues:": [[105, "known-issues"]], "Selection Keywords": [[106, "selection-keywords"]], "Simple selections": [[106, "simple-selections"]], "Boolean": [[106, "boolean"]], "Geometric": [[106, "geometric"]], "Similarity and connectivity": [[106, "similarity-and-connectivity"]], "Index": [[106, "index"]], "Preexisting selections and modifiers": [[106, "preexisting-selections-and-modifiers"]], "Dynamic selections": [[106, "dynamic-selections"]], "Ordered selections": [[106, "ordered-selections"]], "Standard residues in MDAnalysis selections": [[107, "standard-residues-in-mdanalysis-selections"]], "Proteins": [[107, "proteins"]], "Protein backbone": [[107, "protein-backbone"]], "Nucleic acids": [[107, "nucleic-acids"]], "Nucleic backbone": [[107, "nucleic-backbone"]], "Nucleobases": [[107, "nucleobases"]], "Nucleic sugars": [[107, "nucleic-sugars"]], "Tests in MDAnalysis": [[108, "tests-in-mdanalysis"]], "Running the test suite": [[108, "running-the-test-suite"]], "Testing in parallel": [[108, "testing-in-parallel"]], "Test coverage": [[108, "test-coverage"]], "Continuous Integration tools": [[108, "continuous-integration-tools"]], "GitHub Actions": [[108, "github-actions"]], "Azure": [[108, "azure"]], "Cirrus CI": [[108, "cirrus-ci"]], "Codecov": [[108, "codecov"]], "Writing new tests": [[108, "writing-new-tests"]], "General conventions": [[108, "general-conventions"]], "Assertions": [[108, "assertions"]], "Testing exceptions and warnings": [[108, "testing-exceptions-and-warnings"]], "Failing tests": [[108, "failing-tests"]], "Skipping tests": [[108, "skipping-tests"]], "Fixtures": [[108, "fixtures"]], "Testing the same function with different inputs": [[108, "testing-the-same-function-with-different-inputs"]], "Temporary files and directories": [[108, "temporary-files-and-directories"]], "Module imports": [[108, "module-imports"]], "Tests for analysis and visualization modules": [[108, "tests-for-analysis-and-visualization-modules"]], "Using test data files": [[108, "using-test-data-files"]], "The topology system": [[109, "the-topology-system"]], "Topology attributes": [[109, "topology-attributes"]], "Canonical attributes": [[109, "canonical-attributes"]], "Format-specific attributes": [[109, "format-specific-attributes"]], "Connectivity information": [[109, "connectivity-information"]], "Adding TopologyAttrs": [[109, "adding-topologyattrs"]], "Modifying TopologyAttrs": [[109, "modifying-topologyattrs"]], "Default values and attribute levels": [[109, "default-values-and-attribute-levels"]], "Topology objects": [[109, "topology-objects"]], "Adding to a Universe": [[109, "adding-to-a-universe"]], "Creating with an AtomGroup": [[109, "creating-with-an-atomgroup"]], "Deleting from a Universe": [[109, "deleting-from-a-universe"]], "Topology-specific methods": [[109, "topology-specific-methods"]], "Slicing trajectories": [[110, "slicing-trajectories"]], "On-the-fly transformations": [[112, "on-the-fly-transformations"]], "Example workflows": [[112, "example-workflows"]], "Custom transformations": [[112, "custom-transformations"]], "Units and constants": [[113, "units-and-constants"]], "Base units in MDAnalysis": [[113, "id1"]], "Unit conversion": [[113, "unit-conversion"]], "Constants": [[113, "constants"]], "Length": [[113, "length"]], "Density": [[113, "density"]], "Time": [[113, "time"]], "Charge": [[113, "charge"]], "Speed": [[113, "speed"]], "Force": [[113, "force"]], "Energy": [[113, "energy"]], "Universe": [[114, "universe"]], "Creating a Universe": [[114, "creating-a-universe"]], "Loading from files": [[114, "loading-from-files"]], "Constructing from AtomGroups": [[114, "constructing-from-atomgroups"]], "Constructing from scratch": [[114, "constructing-from-scratch"]], "Guessing topology attributes": [[114, "guessing-topology-attributes"]], "Universe properties and methods": [[114, "universe-properties-and-methods"]]}, "indexentries": {"x y z": [[83, "term-X-Y-Z"]], "atomname": [[83, "term-atomName"]], "chainid": [[83, "term-chainID"]], "charge": [[83, "term-charge"]], "radius": [[83, "term-radius"]], "recordname": [[83, "term-recordName"]], "residuename": [[83, "term-residueName"]], "residuenumber": [[83, "term-residueNumber"]], "serial": [[83, "term-serial"]], "duecredit_enable": [[104, "index-0"]], "environment variable": [[104, "index-0"]]}})
\ No newline at end of file
diff --git a/dev/standard_selections.html b/dev/standard_selections.html
index 9fbbd77ab..770c418d8 100644
--- a/dev/standard_selections.html
+++ b/dev/standard_selections.html
@@ -332,9 +332,9 @@ Protein backbone
-C
+O
N
-O
+C
CA
@@ -347,43 +347,43 @@ Protein backbone
-RA5
-RA3
-DC
+RA
+DG3
U
-GUA
-RU3
-DA5
-DA3
-
-RU5
+DC
+DT
THY
+ADE
+RC3
+
+DA5
A
+GUA
+DA3
+RU5
+RA3
+DT5
RU
-ADE
+
+DG
+RG3
+DT3
+RC5
URA
-RC3
+RU3
DC5
+C
-DT5
-DT3
-RA
-DG5
+DA
T
+CYT
+RG5
+RA5
+DG5
RG
DC3
-RG5
-DA
-DT
-RC5
-DG
-C
-RC
-CYT
-DG3
-
-RG3
+RC
G
@@ -399,10 +399,10 @@ Nucleic backbone
-O3’
+O5’
P
C3’
-O5’
+O3’
C5’
@@ -414,22 +414,22 @@ Nucleic backbone
O6
-N1
-C8
-N6
-N4
+C6
+C5
O2
+N3
+N6
N2
-O4
+C2
-N9
-C6
+O4
+N7
+N4
+N1
+N9
+C8
C4
C5M
-C2
-N3
-C5
-N7
@@ -439,11 +439,11 @@ Nucleic sugars
-C1’
-O4’
-C3’
-C4’
+C4’
C2’
+C1’
+C3’
+O4’
diff --git a/dev/testing.html b/dev/testing.html
index c156cdfde..de96bd59a 100644
--- a/dev/testing.html
+++ b/dev/testing.html
@@ -433,13 +433,13 @@ Testing exceptions and warnings
Failing tests
-To mark an expected failure, use pytest.mark.xfail()
decorator:
+To mark an expected failure, use pytest.mark.xfail()
decorator:
@pytest.mark.xfail
def tested_expected_failure():
assert 1 == 2
-To manually fail a test, make a call to pytest.fail()
:
+To manually fail a test, make a call to pytest.fail()
:
def test_open(self, tmpdir):
outfile = str(tmpdir.join('lammps-writer-test.dcd'))
try:
@@ -452,7 +452,7 @@ Failing tests
Skipping tests
-To skip tests based on a condition, use pytest.mark.skipif(condition)
decorator:
+To skip tests based on a condition, use pytest.mark.skipif(condition)
decorator:
import numpy as np
try:
from numpy import shares_memory
@@ -467,7 +467,7 @@ Skipping testsassert not np.shares_memory(original.ts.positions, copy.ts.positions)
-To skip a test if a module is not available for importing, use pytest.importorskip('module_name')
+To skip a test if a module is not available for importing, use pytest.importorskip('module_name')
def test_write_trajectory_netCDF4(self, universe, outfile):
pytest.importorskip("netCDF4")
return self._test_write_trajectory(universe, outfile)
@@ -477,7 +477,7 @@ Skipping tests
Fixtures
-Use fixtures as much as possible to reuse “resources” between test methods/functions. Pytest fixtures are functions that run before each test function that uses that fixture. A fixture is typically set up with the pytest.fixture()
decorator, over a function that returns the object you need:
+Use fixtures as much as possible to reuse “resources” between test methods/functions. Pytest fixtures are functions that run before each test function that uses that fixture. A fixture is typically set up with the pytest.fixture()
decorator, over a function that returns the object you need:
@pytest.fixture
def universe(self):
return mda.Universe(self.ref_filename)