forked from Solh0xq/solana-bump-bot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSolVolBotTrade.py
195 lines (164 loc) · 8.5 KB
/
SolVolBotTrade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# To test or purchase the source code, contact @SolVolSupp_bot on Telegram
# To test or purchase the source code, contact @SolVolSupp_bot on Telegram
import requests
import asyncio
import pandas as pd
from apscheduler.schedulers.background import BlockingScheduler
from soltrade.transactions import perform_swap, market
from soltrade.indicators import calculate_ema, calculate_rsi, calculate_bbands, calculate_macd, calculate_stoch
from soltrade.wallet import find_balance, check_wallet_status, transfer_funds, get_wallet_transactions
from soltrade.log import log_general, log_transaction
from soltrade.config import config
market('position.json')
# Pulls the candlestick information in fifteen minute intervals
def fetch_candlestick() -> dict:
url = "https://min-api.cryptocompare.com/data/v2/histominute"
headers = {'authorization': config().api_key}
params = {'tsym': config().primary_mint_symbol, 'fsym': config().secondary_mint_symbol, 'limit': 50, 'aggregate': config().trading_interval_minutes}
response = requests.get(url, headers=headers, params=params)
if response.json().get('Response') == 'Error':
log_general.error(response.json().get('Message'))
exit()
return response.json()
# Analyzes the current market variables and determines trades
def perform_analysis():
log_general.debug("Soltrade is analyzing the market; no trade has been executed.")
global stoploss, takeprofit
market().load_position()
# Converts JSON response for DataFrame manipulation
candle_json = fetch_candlestick()
candle_dict = candle_json["Data"]["Data"]
# Creates DataFrame for manipulation
columns = ['close', 'high', 'low', 'open', 'time', 'VF', 'VT']
df = pd.DataFrame(candle_dict, columns=columns)
df['time'] = pd.to_datetime(df['time'], unit='s')
# DataFrame variable for TA-Lib manipulation
cl = df['close']
# Technical analysis values used in trading algorithm
price = cl.iat[-1]
ema_short = calculate_ema(dataframe=df, length=5)
ema_medium = calculate_ema(dataframe=df, length=20)
rsi = calculate_rsi(dataframe=df, length=14)
upper_bb, lower_bb = calculate_bbands(dataframe=df, length=14)
macd, signal, hist = calculate_macd(dataframe=df)
stoch_k, stoch_d = calculate_stoch(dataframe=df)
stoploss = market().sl
takeprofit = market().tp
log_general.debug(f"""
price: {price}
short_ema: {ema_short}
med_ema: {ema_medium}
upper_bb: {upper_bb.iat[-1]}
lower_bb: {lower_bb.iat[-1]}
rsi: {rsi}
macd: {macd.iat[-1]}
signal: {signal.iat[-1]}
stoch_k: {stoch_k.iat[-1]}
stoch_d: {stoch_d.iat[-1]}
stop_loss: {stoploss}
take_profit: {takeprofit}
""")
if not market().position:
input_amount = find_balance(config().primary_mint)
if (ema_short > ema_medium or price < lower_bb.iat[-1]) and rsi <= 31:
log_transaction.info("Soltrade has detected a buy signal.")
if input_amount <= 0:
log_transaction.warning(f"Soltrade has detected a buy signal, but does not have enough {config().primary_mint_symbol} to trade.")
return
is_swapped = asyncio.run(perform_swap(input_amount, config().primary_mint))
if is_swapped:
stoploss = market().sl = cl.iat[-1] * 0.925
takeprofit = market().tp = cl.iat[-1] * 1.25
market().update_position(True, stoploss, takeprofit)
return
else:
input_amount = find_balance(config().secondary_mint)
if price <= stoploss or price >= takeprofit:
log_transaction.info("Soltrade has detected a sell signal. Stoploss or takeprofit has been reached.")
is_swapped = asyncio.run(perform_swap(input_amount, config().secondary_mint))
if is_swapped:
stoploss = takeprofit = market().sl = market().tp = 0
market().update_position(False, stoploss, takeprofit)
return
if (ema_short < ema_medium or price > upper_bb.iat[-1]) and rsi >= 68:
log_transaction.info("Soltrade has detected a sell signal. EMA or BB has been reached.")
is_swapped = asyncio.run(perform_swap(input_amount, config().secondary_mint))
if is_swapped:
stoploss = takeprofit = market().sl = market().tp = 0
market().update_position(False, stoploss, takeprofit)
return
# Fetch market data for specified intervals
def fetch_market_data(interval: str = 'histoday') -> dict:
url = f"https://min-api.cryptocompare.com/data/v2/{interval}"
headers = {'authorization': config().api_key}
params = {'tsym': config().primary_mint_symbol, 'fsym': config().secondary_mint_symbol, 'limit': 200}
response = requests.get(url, headers=headers, params=params)
if response.json().get('Response') == 'Error':
log_general.error(response.json().get('Message'))
exit()
return response.json()
# Calculate Moving Average Convergence Divergence
def calculate_macd(dataframe: pd.DataFrame, short_period: int = 12, long_period: int = 26, signal_period: int = 9):
short_ema = dataframe['close'].ewm(span=short_period, adjust=False).mean()
long_ema = dataframe['close'].ewm(span=long_period, adjust=False).mean()
macd = short_ema - long_ema
signal = macd.ewm(span=signal_period, adjust=False).mean()
histogram = macd - signal
return macd, signal, histogram
# Calculate Stochastic Oscillator
def calculate_stoch(dataframe: pd.DataFrame, k_period: int = 14, d_period: int = 3):
low_min = dataframe['low'].rolling(window=k_period).min()
high_max = dataframe['high'].rolling(window=k_period).max()
k = 100 * ((dataframe['close'] - low_min) / (high_max - low_min))
d = k.rolling(window=d_period).mean()
return k, d
# Check wallet status
def check_wallet_status(wallet_address: str):
# Simulated function to check wallet status
return {"address": wallet_address, "status": "active"}
# Transfer funds between wallets
def transfer_funds(from_wallet: str, to_wallet: str, amount: float):
# Simulated function to transfer funds
log_transaction.info(f"Transferring {amount} from {from_wallet} to {to_wallet}.")
return True
# Get wallet transactions
def get_wallet_transactions(wallet_address: str) -> list:
# Simulated function to get wallet transactions
return [{"txid": "12345", "amount": 0.5, "type": "deposit"}, {"txid": "67890", "amount": 0.3, "type": "withdrawal"}]
# Log wallet transactions
def log_wallet_transactions(wallet_address: str):
transactions = get_wallet_transactions(wallet_address)
for transaction in transactions:
log_general.info(f"Wallet {wallet_address} - TxID: {transaction['txid']}, Amount: {transaction['amount']}, Type: {transaction['type']}")
# Analyze market sentiment
def analyze_market_sentiment():
# Simulated function to analyze market sentiment
sentiment = "Bullish"
log_general.info(f"Market sentiment is currently {sentiment}.")
return sentiment
# Update trading parameters
def update_trading_parameters():
# Simulated function to update trading parameters
new_stoploss = 0.9 * market().sl
new_takeprofit = 1.1 * market().tp
market().sl, market().tp = new_stoploss, new_takeprofit
log_general.info(f"Updated stoploss to {new_stoploss} and takeprofit to {new_takeprofit}.")
# Monitor market volatility
def monitor_market_volatility():
# Simulated function to monitor market volatility
volatility = "High"
log_general.warning(f"Market volatility is currently {volatility}. Exercise caution in trading.")
# Fetch latest news
def fetch_latest_news():
# Simulated function to fetch latest news
news = [{"headline": "Market reaches new highs", "source": "Crypto News"}]
for item in news:
log_general.info(f"News: {item['headline']} - Source: {item['source']}")
# This starts the trading function on a timer
def start_trading():
log_general.info("Soltrade has now initialized the trading algorithm.")
trading_sched = BlockingScheduler()
trading_sched.add_job(perform_analysis, 'interval', seconds=config().price_update_seconds, max_instances=1)
trading_sched.start()
perform_analysis()
# To test or purchase the source code, contact @SolVolSupp_bot on Telegram