-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDMRG_Spin_1.py
1090 lines (428 loc) · 26.1 KB
/
DMRG_Spin_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import print_function, division # requires Python >= 2.6
import numpy as np
from scipy.sparse import kron, identity
from scipy.sparse.linalg import eigsh # Lanczos routine from ARPACK
import math
import time
#np.set_printoptions(precision=12, suppress=True, threshold=10000, linewidth=300)
np.set_printoptions(precision=10, suppress=True, threshold=10000, linewidth=300)
start_time = time.time()
def truncEr(array, n):
sum = 0.0
for i in range(0,n):
sum = sum + array[i]
return 1 - sum
################################################
# INFINITE SYSTEM ALGORITHM
# list/array to store matrices for finite algorithm; refer to p. 1691 of notes.
HLMAT = []
HRMAT = []
# list/ array to store transformation/ truncation matrices for wave function transformation.
UENVL = []
UENVR = []
# Construct Sz, S+ and S- for a single site
sqtwo=1.41421356237309504880168872421
Sz = np.array([[ 1.0, 0, 0], [0 , 0, 0], [0, 0 , -1.0]], dtype = 'd')
Sp = np.array([[0, sqtwo , 0], [0, 0, sqtwo ], [0, 0, 0] ], dtype = 'd')
Sm = np.array([[0, 0, 0], [sqtwo , 0, 0], [0, sqtwo, 0] ], dtype = 'd')
#Initial Hamiltonians for left and right sides; two site Hamiltonians.
HL = kron(Sz, Sz) + 0.5 * (kron(Sp, Sm) + kron(Sm, Sp) )
HR = kron(Sz, Sz) + 0.5 * (kron(Sp, Sm) + kron(Sm, Sp) )
# Adding HR to the list; refer to p. 1691 of notes
HRMAT.append(HR)
HLMAT.append(HL)
# Initialising matrices for growth
SztL = Sz;
SptL = Sp;
SmtL = Sm;
SztR = Sz;
SptR = Sp;
SmtR = Sm;
###############################################
# Forming superblock. Refer to p. 1568 of notes
dim = 3 # Dimension of Hilbert space associated wiht a single site
m = dim**2 # How many states to keep associated with reduced density matrix of two site system. In this case, all states are kept.
LN = 4 # Total number of lattice sites.
DL = dim
DR = dim
# From p. 1570 in in notes
# Left
SzSHL = kron(identity(DL), Sz)
SpSHL = kron(identity(DL), Sp)
SmSHL = kron(identity(DL), Sm)
# Right
SzSHR = kron(identity(DR), Sz)
SpSHR = kron(identity(DR), Sp)
SmSHR = kron(identity(DR), Sm)
# Final Hamiltonian/ Super Hamiltonian (refer to p. 1568 of notes)
H = kron(HL, identity(DR * dim)) + kron(identity(DL * dim), HR) + 0.5 * (kron(SmSHL, SpSHR)) + 0.5 * (kron(SpSHL, SmSHR)) + kron(SzSHL, SzSHR) #works
# Find Ground state
(GSE,), GS = eigsh(H, k=1, which="SA")
print ("LN = ", LN)
print ("E/L = ",GSE/LN)
print (" ")
# Construct reduced density matrix
sd = HL.shape[0]
psi = GS.reshape([sd, -1], order='C')
rho = np.dot(psi, psi.conjugate().transpose())
# Diagonalise reduced density matrix
evals, evecs = np.linalg.eigh(rho)
# Form the truncated reduced density matrix
idx = evals.argsort() # Order eigenvalues
idx = idx[::-1] # Reverse order so that largest eigenvalues are first
U = evecs[:,idx[:m]] # Create transformation matrix with m^th largest eigenvalues
UENVL.append(U) # Storing matrices for wave function transformation. Refer to p. 1758
# Initialsing spin operators that connect two blocks for growth
SztL = kron(identity( dim ) , SztL)
SptL = kron(identity( dim ) , SptL)
SmtL = kron(identity( dim ) , SmtL)
# right block. Refer to. 1676
SztR = kron(SztR,identity(dim))
SptR = kron(SptR,identity(dim))
SmtR = kron(SmtR,identity(dim))
M = 10
N = 3
Sit = 20 # Number of sites required to output at an end of infinite algorithm; must be an even number
It = (Sit/2) - 2 # No of iterations required to produce number of sits Sit. Refer to p. 1712
It2 = Sit - (Sit/2) - 2
It3 = Sit - 4 # refer to p. 1715
It4 = (Sit/2) - 2
# Must convert It to integer for it to be used in for loop.
L = N + int(It)
for p in range(N,L):
DL = m # new dimension of truncated block. ml will vary depending on whether the dimension of the Hilbert space is smaller or larger than a fixed size M (see below)
DR = m
LN = 2.0 * (p) #and not 2*(p - 1) as in the part of the algorithm that creates the intial lattice.
# transformation of left block
SztL = U.conjugate().transpose().dot(SztL.dot(U))
SptL = U.conjugate().transpose().dot(SptL.dot(U))
SmtL = U.conjugate().transpose().dot(SmtL.dot(U))
# transformation of right block
SztR = U.conjugate().transpose().dot(SztR.dot(U))
SptR = U.conjugate().transpose().dot(SptR.dot(U))
SmtR = U.conjugate().transpose().dot(SmtR.dot(U))
HL = U.conjugate().transpose().dot(HL.dot(U))
HR = U.conjugate().transpose().dot(HR.dot(U))
HL = kron(HL, identity(dim)) + kron(SztL, Sz) + 0.5 *( kron(SptL, Sm) + kron(SmtL, Sp))
HR = kron(HR, identity(dim)) + kron(SztL, Sz) + 0.5 *( kron(SptL, Sm) + kron(SmtL, Sp))
HRMAT.append(HR) # Adding HR to the list; refer to p. 1691 and 1708 of notes.
HLMAT.append(HL) # Adding HR to the list; refer to p. 1691 and 1708 of notes
#create superblock
# left
SzSHL = kron(identity(DL), Sz)
SpSHL = kron(identity(DL), Sp)
SmSHL = kron(identity(DL), Sm)
# right
SzSHR = kron(identity(DR), Sz)
SpSHR = kron(identity(DR), Sp)
SmSHR = kron(identity(DR), Sm)
H = kron(HL, identity(DR * dim)) + kron(identity(DL * dim), HR) + 0.5 * (kron(SmSHL, SpSHR)) + 0.5 * (kron(SpSHL, SmSHR)) + kron(SzSHL, SzSHR)
# Find Ground state
(GSE,), GS = eigsh(H, k=1, which="SA")
print (" ")
print ("LN = ", LN )
print ("E/L = ", GSE/LN)
print (" ")
# Construct reduced density matrix
if HLMAT[p - 3].shape[0] < M:
sd = HLMAT[p - 2].shape[0] # p -2 because 16 x 16 matrix must still be computed before truncation
else:
sd = dim*M # 3 instead of 2 beacause the extra site is 3 dimensional not 2 dimensional.
# print("HLMAT = ", HLMAT[p - 3].shape[0])
psi = GS.reshape([sd, -1], order='C')
RDM = np.dot(psi, psi.conjugate().transpose())
evalsl, evecsl = np.linalg.eigh(RDM)
# Form the truncated reduced density matrix
idx = evalsl.argsort()
idx = idx[::-1]
if HLMAT[p - 2].shape[0] < M:
m = HLMAT[p - 2].shape[0]
else:
m = M
U = evecsl[:,idx[:m]]
UENVL.append(U) # Storing matrices for wave function transformation
# Growth of operators for next iteration
if HRMAT[p - 3].shape[0] < M:
DR = HRMAT[p - 3].shape[0]
DL = HRMAT[p - 3].shape[0]
else:
DR = m
DL = m
#left
SztL = kron(identity(DL), Sz)
SptL = kron(identity(DL), Sp)
SmtL = kron(identity(DL), Sm)
# right
SztR = kron(identity(DR), Sz)
SptR = kron(identity(DR), Sp)
SmtR = kron(identity(DR), Sm)
##############################################################################
# FINITE ALGORITHM
# Use HL from the last part of algorithm to grow left side.
# If you are ending with L = 20, it means that the system size is 10 sites. The following then will grow the left side by one site to make the system 11 sites. Therefore the environment is 9 sites. In turn this means that one should return to the case of L = 18 and store the right hand side block.
# Start with symmetric configuration from infinite algorithm ---------00---------
# Grow left system by one site and shrink right system by one site. Keep in mind that the length of the chain remains at 20 sites.
M = [10, 20, 30, 40, 40]
ss = [30, 60, 90, 120, 120] # Before, elements in M were multiplied by 2 to reflect that the additional site had 2-dimensional Hilbert; now it is 3-dimensional => now mulitply elements of M by 3
# Refer to p.1714 for the following:
# Bottom line: when the the loop indexed with j starts a new iteration the first run in the first loop indexed with i will have the same threshold of states, m, as the previous run. It is only AFTER the first run in the loop indexed with i that one truncates to a new m value. For example, in the above, m = 10 on the first run for j == 0. When one reaches the start of j == 1 run, m is still 10 at the beginning, but then m =20 is introduced towards of the first iteration in i for j == 1.
# len( ) returns the length of the list.
for j in range (0, len(M) ):
# The following will end with ------------------00
for i in range(1,int(It2) + 1): # + 1 included because you are using "range", which starts at 1 and ends at int(It2)
print("i = ", i)
DR = HRMAT[-i-1].shape[0]/dim # dim = 3 instead of 2 since each site is 3 dimensional
if j != 0:
DR = HRMAT[-i - (int(It4) + 1)].shape[0]/dim # Refer to p. 1763 as to why one has (int(It4) + 1)
# Transformation of spin operators connecting left block to right block.
SztL = U.conjugate().transpose().dot(SztL.dot(U))
SptL = U.conjugate().transpose().dot(SptL.dot(U))
SmtL = U.conjugate().transpose().dot(SmtL.dot(U))
# Transformation of left system block
HL = U.conjugate().transpose().dot(HL.dot(U))
# Growth of left side by one site
HL = kron(HL, identity(dim)) + kron(SztL, Sz) + 0.5 *( kron(SptL, Sm) + kron(SmtL, Sp))
HLMAT.append(HL)
DL = HL.shape[0]/dim
# left
SzSHL = kron(identity(DL), Sz)
SpSHL = kron(identity(DL), Sp)
SmSHL = kron(identity(DL), Sm)
# right
SzSHR = kron(identity(DR), Sz)
SpSHR = kron(identity(DR), Sp)
SmSHR = kron(identity(DR), Sm)
# i == int(It2) signifies that the right system is now only composed of two sites. At this stage the right side becomes the system. In this current form of the code, this means that the superblock Hamilto nian must be rearranged. Refer to p. 1700
if i == int(It2):
if j != 0:
H = kron(HRMAT[-i - (int(It4) + 1)], identity(DL * dim)) + kron(identity(DR * dim), HL) + 0.5 * (kron(SpSHR, SmSHL)) + 0.5 * (kron(SmSHR, SpSHL)) + kron(SzSHR, SzSHL)
elif j == 0:
H = kron(HRMAT[-i-1], identity(DL * dim)) + kron(identity(DR * dim), HL) + 0.5 * (kron(SpSHR, SmSHL)) + 0.5 * (kron(SmSHR, SpSHL)) + kron(SzSHR, SzSHL)
elif j != 0:
H = kron(HL, identity(DR * dim)) + kron(identity(DL * dim), HRMAT[-i - (int(It4)+ 1)]) + 0.5 * (kron(SmSHL, SpSHR)) + 0.5 * (kron(SpSHL, SmSHR)) + kron(SzSHL, SzSHR)
else:
H = kron(HL, identity(DR * dim)) + kron(identity(DL * dim), HRMAT[-i-1]) + 0.5 * (kron(SmSHL, SpSHR)) + 0.5 * (kron(SpSHL, SmSHR)) + kron(SzSHL, SzSHR)
if j == 0:
(GSE,), GS = eigsh(H, k=1, which="SA")
else:
(GSE,), GS = eigsh(H, k=1, which="SA", v0 = psi_trial)
print (" ")
print ("LN = ", LN )
print ("E/L = ", GSE/Sit) # Sit is used because the lattice only possesses Sit sites.
print (" ")
if i == 2:
sd = ss[j]
if i == int(It2): # This will always be the case, no matter what value of sd is used
sd = dim**2
# Construct reduced density matrix
psi = GS.reshape([sd, -1], order='C')
RDM = np.dot(psi, psi.conjugate().transpose())
evalsl, evecsl = np.linalg.eigh(RDM)
# Contruct truncated transformation matrix
idx = evalsl.argsort()
idx = idx[::-1]
if i == int(It2):
m = dim**2 # When dealing with spin - 1 system, this should be 9. In general, you could have dim**2
else:
m = M[j]
U = evecsl[:,idx[:m]]
if i != int(It2):
UENVL.append(U) # Storing matrices for wave function transformation. != in place to take into account that the system and environment switch at this stage.
elif j != 0 and i == int(It2):
UENVR = []
UENVR.append(U)
else:
UENVR.append(U) # Because when i == int(It2) the left hand side becomes the environment and the right hand side becomes the system. With that, one stores the very last
######## Break on final loop
if j == 0 and i == It2: # This is condition for wavefunction transformation to begin; it corresponds to configuration ------------------00
psi_a = psi.reshape((-1, DL * dim), order="C") # since the left hand side is the ennvironment dimension, DL is chosen here. AT THE MOMENT, I CANNOT EXPLAIN THIS PART
psi_b = U.conjugate().transpose().dot(psi_a)
psi_c = psi_b.reshape((-1, DL, dim), order="C").transpose(0, 2, 1) # before, dim was 2. This works, but I do not know why.
psi_d = psi_c.reshape((-1, DL), order="C")
psi_trial = UENVL[-1].dot(psi_d.transpose()).transpose().reshape((-1, 1))
elif j != 0: # Unlike the j == 0, where one starts with ---------------00 configuration, j != 0 begins with ----------00----------, and the left hand side is the system until we reach the final iteratiion, when it swaps with the right hand side to become the environment.
if i == int (It2):
psi_a = psi.reshape((-1, DL * dim), order="C")
psi_b = U.conjugate().transpose().dot(psi_a)
psi_c = psi_b.reshape((-1, DL, dim), order="C").transpose(0, 2, 1)
psi_d = psi_c.reshape((-1, DL), order="C")
psi_trial = UENVL[-1].dot(psi_d.transpose()).transpose().reshape((-1, 1))
else:
psi_a = psi.reshape((-1, DR * dim), order="C") # since the left hand side is the ennvironment dimension, DL is chosen here. AT THE MOMENT, I CANNOT EXPLAIN THIS PART
psi_b = U.conjugate().transpose().dot(psi_a)
psi_c = psi_b.reshape((-1, DR, dim), order="C").transpose(0, 2, 1)
psi_d = psi_c.reshape((-1, DR), order="C")
psi_trial = UENVR[-i- (int(It4) + 1)].dot(psi_d.transpose()).transpose().reshape((-1, 1)) # -i - 9 because you wish to access the transformation associated with the configuration of one site extraon the left and one site less on the right. Also, the final element accessed in the last for loop of the previous is -9 => next element to be accessed is -10; since i begins with 1, -i - 9 leads immedaitely to -10.
# left
SztL = kron(identity(DL), Sz)
SptL = kron(identity(DL), Sp)
SmtL = kron(identity(DL), Sm)
# right
SztR = kron(identity(DR), Sz)
SptR = kron(identity(DR), Sp)
SmtR = kron(identity(DR), Sm)
# The following will end with 00------------------
#######################################
# Sweeping in the opposite direction
HR = HRMAT[0] # Initial conidition
HRMAT = [] # The list is emptied as previous matrix are no longer required, except for the first element representing a two-site subsystem; this is resolved in the next line.
HRMAT.append(HR)
for i in range(1, It3 + 1): # + 1 included to ensure that for loop goes through full range
DL = HLMAT[-i-1].shape[0]/dim # Refer to p. 1716; number of rows divided by 2
# Transformation of right side operators
SztR = U.conjugate().transpose().dot(SztR.dot(U))
SptR = U.conjugate().transpose().dot(SptR.dot(U))
SmtR = U.conjugate().transpose().dot(SmtR.dot(U))
HR = U.conjugate().transpose().dot(HR.dot(U)) # HR instead of HL
# Growth
HR = kron(HR, identity(dim)) + kron(SztR, Sz) + 0.5 *( kron(SptR, Sm) + kron(SmtR, Sp))
HRMAT.append(HR)
DR = HRMAT[i].shape[0]/dim # HRMAT list was empty just before this loop, with that the right hand system is grown and then stored in HRMAT using append. DR can then be obtained in a similar fashion to the previous stage of the finite algorithm. However, instead of -i - 1, one has i since HRMAT is storing the matrices as the right hand system grows.
# left
SzSHL = kron(identity(DL), Sz)
SpSHL = kron(identity(DL), Sp)
SmSHL = kron(identity(DL), Sm)
# right
SzSHR = kron(identity(DR), Sz)
SpSHR = kron(identity(DR), Sp)
SmSHR = kron(identity(DR), Sm)
if i == It3:
H = kron(HLMAT[-i-1], identity(DR * dim)) + kron(identity(DL * dim), HR) + 0.5 * (kron(SmSHL, SpSHR)) + 0.5 * (kron(SpSHL, SmSHR)) + kron(SzSHL, SzSHR)
else:
H = kron(HR, identity(DL * dim)) + kron(identity(DR * dim), HLMAT[-i-1]) + 0.5 * (kron(SpSHR, SmSHL)) + 0.5 * (kron(SmSHR, SpSHL)) + kron(SzSHR, SzSHL)
# Find ground state
(GSE,), GS = eigsh(H, k=1, which="SA", v0 = psi_trial)
print(" ")
print(GSE/Sit)
print(" ")
# Construct reduced density matrix
if HRMAT[i].shape[0] < dim* M[j]: # it is 2*M instead of M beacuse you wish to compute 16x16 reduced density matrix before truncaiton. Now, dim instead of 2.
sd = HRMAT[i].shape[0]
elif i == int(It3):
sd = dim**2
else:
sd = dim*M[j]
psi = GS.reshape([sd, -1], order='C') # Problem here when truncaiton begins. If statement needs to be implemented in order to ensure that the wavefunction is reshaped correctly.
RDM = np.dot(psi, psi.conjugate().transpose())
evalsl, evecsl = np.linalg.eigh(RDM)
idx = evalsl.argsort()
idx = idx[::-1]
# Form truncated matrix
if HRMAT[i].shape[0] < M[j]:
m = HRMAT[i].shape[0]
else:
m = M[j]
# Right system truncation matrix. Needs to be stored in future, not now; still testing.
U = evecsl[:,idx[:m]]
if i != int(It3):
UENVR.append(U) # Storing matrices for wave function transformation. != in place to take into account that the system and environment switch at this stage.
if i == int(It3): # refer to p. 1761 of notes
UENVL = []
UENVL.append(U)
###########################
if j == 0 and i < 7: # This represents generating psi_trial up to approximately the middle of the chain. I am not sure why one does this in the simpe dmrg code. However, when one is on the second sweep, this apparently is no longer applicable. NOT SURE WHY THIS IS.
psi_a = psi.reshape((-1, DL * dim), order="C") # since the left hand side is the ennvironment dimension, DL is chosen here. AT THE MOMENT, I CANNOT EXPLAIN THIS PART
psi_b = U.conjugate().transpose().dot(psi_a)
psi_c = psi_b.reshape((-1, DL, dim), order="C").transpose(0, 2, 1)
psi_d = psi_c.reshape((-1, DL), order="C")
psi_trial = UENVL[-i - 1].dot(psi_d.transpose()).transpose().reshape((-1, 1)) # UENV[-i - 1] because we now wish to access -2 in the first iteration, -3 in the second iteration, etc.
elif j == 0 and i == int(It3): # take into account that the system switches at this point in the iteration.
psi_a = psi.reshape((-1, DR * dim), order="C")
psi_b = U.conjugate().transpose().dot(psi_a)
psi_c = psi_b.reshape((-1, DR, dim), order="C").transpose(0, 2, 1)
psi_d = psi_c.reshape((-1, DR), order="C")
psi_trial = UENVR[-1].dot(psi_d.transpose()).transpose().reshape((-1, 1))
else:
psi_trial = None
if j != 0 and i != int(It3): # Now we do not skip over any parts: no longer have psi_trial = None.
psi_a = psi.reshape((-1, DL * dim), order="C")
psi_b = U.conjugate().transpose().dot(psi_a)
psi_c = psi_b.reshape((-1, DL, dim), order="C").transpose(0, 2, 1)
psi_d = psi_c.reshape((-1, DL), order="C")
psi_trial = UENVL[-i - 1].dot(psi_d.transpose()).transpose().reshape((-1, 1))
elif j != 0 and i == int(It3):
psi_a = psi.reshape((-1, DR * dim), order="C")
psi_b = U.conjugate().transpose().dot(psi_a)
psi_c = psi_b.reshape((-1, DR, dim), order="C").transpose(0, 2, 1)
psi_d = psi_c.reshape((-1, DR), order="C")
psi_guess = UENVR[-1].dot(psi_d.transpose()).transpose().reshape((-1, 1))
# left
SztL = kron(identity(DL), Sz)
SptL = kron(identity(DL), Sp)
SmtL = kron(identity(DL), Sm)
# right block. Refer to. 1676
SztR = kron(identity(DR), Sz)
SptR = kron(identity(DR), Sp)
SmtR = kron(identity(DR), Sm)
######################################################################
# Sweeping back in the original direction
# Now the left side becomes the SYSTEM
# The following will end with ---------00---------
# Transformation matrix in the last part of previous section must be transformed as to be 4x4 to reflect that the system is now represented by the left side (which is 2 sites for the last part).
HL = HLMAT[0] # Initialising
HLMAT = []
HLMAT.append(HL)
for i in range(1, int(It4) + 1): # +1 included to allow for full range in loop
SztL = U.conjugate().transpose().dot(SztL.dot(U))
SptL = U.conjugate().transpose().dot(SptL.dot(U))
SmtL = U.conjugate().transpose().dot(SmtL.dot(U))
HL = U.conjugate().transpose().dot(HL.dot(U))
# Growth
HL = kron(HL, identity(dim)) + kron(SztL, Sz) + 0.5 *( kron(SptL, Sm) + kron(SmtL, Sp))
HLMAT.append(HL)
DL = HLMAT[i].shape[0]/dim # Refer to p. 1716; number of rows divided by 2
# left
SzSHL = kron(identity(DL), Sz)
SpSHL = kron(identity(DL), Sp)
SmSHL = kron(identity(DL), Sm)
# right
SzSHR = kron(identity(DR), Sz)
SpSHR = kron(identity(DR), Sp)
SmSHR = kron(identity(DR), Sm)
#Find HRMAT. HRNEW below is the HR matrix in the previous stage of this algorithm; it is the matrix associated with the penultimate run.
H = kron(HL, identity(DR * dim)) + kron(identity(DL * dim), HRMAT[-i-1]) + 0.5 * (kron(SmSHL, SpSHR)) + 0.5 * (kron(SpSHL, SmSHR)) + kron(SzSHL, SzSHR)
# Find ground state
(GSE,), GS = eigsh(H, k=1, which="SA", v0 = psi_trial)
print(" ")
print(GSE/Sit)
print(" ")
# Construct reduced density matrix
if HLMAT[i].shape[0] < dim* M[j]: # it is 2*M instead of M beacuse you wish to compute 16x16 reduced density matrix before truncaiton
sd = HLMAT[i].shape[0]
else:
sd = dim*M[j]
psi = GS.reshape([sd, -1], order='C') # Problem here when truncaiton begins. If statement needs to be implemented in order to ensure that the wavefunction is reshaped correctly.
RDM = np.dot(psi, psi.conjugate().transpose())
evalsl, evecsl = np.linalg.eigh(RDM)