forked from HerrMotz/marjapussi-ki
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsample-GPT-PIMC.rs
349 lines (292 loc) · 11.1 KB
/
sample-GPT-PIMC.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
//! A single-file skeleton demonstrating a GPU-based PIMC search approach in Rust.
//! Using `cust` for CUDA bindings.
//!
//! To compile/run, you'll need `cust` in your Cargo.toml, e.g.:
//!
//! [dependencies]
//! cust = "0.7"
//! rand = "0.8"
//!
//! Then `cargo run` or similar. This is only a template! Fill in real logic for:
//! - Determinization (distributing unknown cards)
//! - GPU kernel playout logic
//! - Marjapussi rule enforcement
//! - Actual card scoring (instead of trivial placeholders)
use std::error::Error;
use rand::prelude::*;
use cust::context::{Context, ContextFlags};
use cust::device::Device;
use cust::memory::{CopyDestination, DeviceBuffer};
use cust::module::Module;
use cust::stream::{Stream, StreamFlags};
///////////////////////////////////////////////////////////////////////////////
// MARJAPUSSI GAME STATE TRAIT (PARTIAL INFO)
///////////////////////////////////////////////////////////////////////////////
/// A placeholder trait representing a Marjapussi game state with partial information.
/// You must implement this for your actual game logic.
pub trait MarjaPussiGameState {
/// Return true if the state is terminal (no further moves possible).
fn is_terminal(&self) -> bool;
/// Evaluate the final score if terminal.
/// (Or return some heuristic if you prefer.)
fn evaluate_terminal_score(&self) -> f32;
/// Which player's turn it is (0..=3 for a 4-player game, etc.).
fn current_player(&self) -> usize;
/// Return all legal moves from this state.
fn legal_moves(&self) -> Vec<MarjaPussiMove>;
/// Apply a move (in place), mutating the state.
fn apply_move(&mut self, mov: &MarjaPussiMove);
/// Clone into a boxed trait object.
fn clone_box(&self) -> Box<dyn MarjaPussiGameState>;
// ... Add further methods if needed (e.g. known/unknown cards, trump announcements, etc.)
}
/// A move in Marjapussi. Could be "play this card," "announce trump," etc.
#[derive(Clone, Debug)]
pub struct MarjaPussiMove {
pub move_id: u8,
// Add any fields you need to represent a move in Marjapussi.
}
// We can do the clone manually or add a constructor. It's minimal here.
///////////////////////////////////////////////////////////////////////////////
// GPU KERNEL / DATA STRUCT
///////////////////////////////////////////////////////////////////////////////
/// A compact representation of a **perfect-information** state on GPU.
///
/// Must be `#[repr(C)]` and contain only data that can be transferred easily.
/// For a real game, you'll store suit/rank arrays, who holds which cards, etc.
#[repr(C)]
#[derive(Clone, Copy, Debug, Default)]
pub struct GpuMarjaState {
pub current_player: u32,
pub is_terminal: u8,
// Just a placeholder array. In real code, you might store exactly 36
// slots for each card (0=In hand of playerX, 1=In discards, etc.),
// or some suitable encoding for the deck:
pub card_data: [u8; 64],
}
/// This PTX code is a minimal kernel that just sets scores[idx] = idx as float.
/// Replace with your actual rollout logic.
static PTX_SRC: &str = r#"
.version 7.0
.target sm_70
.address_size 64
.visible .entry do_rollouts(
.param .u64 states_ptr,
.param .u64 scores_ptr,
.param .u32 count)
{
.reg .pred %p<2>;
.reg .f32 %f<2>;
.reg .s32 %r<6>;
.reg .u64 %rd<6>;
ld.param.u64 %rd1, [states_ptr];
ld.param.u64 %rd2, [scores_ptr];
ld.param.u32 %r2, [count];
mov.u32 %r3, %ctaid.x; // blockIdx.x
mov.u32 %r4, %ntid.x; // blockDim.x
mov.u32 %r5, %tid.x; // threadIdx.x
mad.lo.s32 %r0, %r3, %r4, %r5; // idx = blockIdx.x * blockDim.x + threadIdx.x
setp.ge.s32 %p0, %r0, %r2;
@%p0 bra DONE;
// In real code, read states_ptr[idx], do a random playout, etc.
// For demonstration, just do:
cvt.f32.s32 %f1, %r0;
// store into scores[idx]
mul.wide.s32 %rd3, %r0, 4; // 4 bytes per float
add.s64 %rd4, %rd2, %rd3;
st.global.f32 [%rd4], %f1;
DONE:
ret;
}
"#;
/// Launch the kernel on the GPU, returning per-state rollout scores.
fn gpu_rollouts(
states: &mut [GpuMarjaState],
) -> Result<Vec<f32>, Box<dyn Error>> {
let device = Device::get_device(0)?;
let _ctx = Context::create_and_push(ContextFlags::MAP_HOST | ContextFlags::SCHED_AUTO, device)?;
let stream = Stream::create(StreamFlags::DEFAULT, None)?;
let module = Module::from_ptx(PTX_SRC, &[])?;
let n = states.len();
let mut d_states = DeviceBuffer::new(n)?;
let mut d_scores = DeviceBuffer::<f32>::new(n)?;
// Copy states to GPU
d_states.copy_from(states)?;
// kernel
let f = module.get_function("do_rollouts")?;
let block_size = 128u32;
let grid_size = ((n as u32) + block_size - 1) / block_size;
unsafe {
cust::launch!(
f<<<grid_size, block_size, 0, stream>>>(
d_states.as_device_ptr(),
d_scores.as_device_ptr(),
n as u32
)
)?;
}
stream.synchronize()?;
// Copy back
let mut scores = vec![0.0f32; n];
d_scores.copy_to(&mut scores)?;
Ok(scores)
}
///////////////////////////////////////////////////////////////////////////////
// PIMC SOLVER
///////////////////////////////////////////////////////////////////////////////
/// A naive PIMC solver with GPU rollouts.
/// It does:
/// 1) For each candidate move from the partial-info state,
/// generate `rollouts_per_move` determinized states,
/// 2) Offload them to GPU for rollouts,
/// 3) Average the resulting scores,
/// 4) Pick the best move by average outcome.
pub struct PIMCSolver {
pub rollouts_per_move: usize,
}
impl PIMCSolver {
/// Main entry point: choose the next move from a partial-info Marjapussi state.
pub fn select_move(
&self,
state: &dyn MarjaPussiGameState,
) -> MarjaPussiMove {
let moves = state.legal_moves();
if moves.is_empty() {
// If no legal moves, do something sensible:
return MarjaPussiMove { move_id: 0 };
}
if moves.len() == 1 {
return moves[0].clone();
}
// We'll gather (move_index -> determinized states) in big arrays.
let mut all_gpu_states = Vec::new(); // each is GpuMarjaState
let mut all_move_index = Vec::new(); // which move generated this state?
// For each move, create N determinized states
for (m_idx, mv) in moves.iter().enumerate() {
for _ in 0..self.rollouts_per_move {
// 1) Make a perfect-info guess from the partial-info state:
let det = self.determinize(state);
// 2) Apply the candidate move immediately:
let mut after = det.clone_box();
after.apply_move(mv);
// 3) Convert to GPU struct
let gpu_st = self.to_gpu_state(&*after);
all_gpu_states.push(gpu_st);
all_move_index.push(m_idx);
}
}
// Now run GPU rollouts on all states in one shot
let scores = gpu_rollouts(&mut all_gpu_states)
.expect("GPU rollouts failed");
// Accumulate sums and counts for each move
let mut sums = vec![0.0f32; moves.len()];
let mut counts = vec![0; moves.len()];
for (i, &score) in scores.iter().enumerate() {
let m_idx = all_move_index[i];
sums[m_idx] += score;
counts[m_idx] += 1;
}
// Find best average
let mut best_move = 0;
let mut best_val = f32::MIN;
for m_idx in 0..moves.len() {
if counts[m_idx] > 0 {
let avg = sums[m_idx] / (counts[m_idx] as f32);
if avg > best_val {
best_val = avg;
best_move = m_idx;
}
}
}
moves[best_move].clone()
}
/// Convert the partial-information state into one possible perfect-information state
/// that is consistent with known/unknown cards in Marjapussi.
/// (Here we do a trivial example that just clones the state; you must implement real logic.)
fn determinize(&self, state: &dyn MarjaPussiGameState) -> Box<dyn MarjaPussiGameState> {
// Pseudo-code example:
// 1. clone the partial-info state
// 2. randomly assign unknown cards to players (ensuring it doesn't conflict with known info)
// 3. return that as a "perfect info" distribution
let mut st = state.clone_box();
// ...
// e.g. shuffle, deal unknown cards to the hidden hands, etc.
st
}
/// Build the GPU data structure from a fully known (perfect-info) state.
fn to_gpu_state(&self, st: &dyn MarjaPussiGameState) -> GpuMarjaState {
let mut out = GpuMarjaState::default();
out.current_player = st.current_player() as u32;
out.is_terminal = if st.is_terminal() { 1 } else { 0 };
// Fill out.card_data with your perfect-info distribution of cards.
// This is game-specific encoding. We'll just do dummy data for now:
// Example: out.card_data[i] = 0 means "card i is with player 0," etc.
//
// In real code, you'd examine each player's cards or the location of each card
// and fill out.card_data accordingly.
out
}
}
///////////////////////////////////////////////////////////////////////////////
// DEMO / MAIN
///////////////////////////////////////////////////////////////////////////////
// A trivial "fake" state, implementing our trait for demonstration only.
// You would replace this with your real MarjaPussi state type.
#[derive(Clone)]
pub struct FakeMarjaState {
pub turn: usize,
pub done: bool,
pub moves: Vec<MarjaPussiMove>,
}
impl MarjaPussiGameState for FakeMarjaState {
fn is_terminal(&self) -> bool {
self.done
}
fn evaluate_terminal_score(&self) -> f32 {
// For a real game, compute the final score based on stich-points, trumps, etc.
42.0
}
fn current_player(&self) -> usize {
self.turn
}
fn legal_moves(&self) -> Vec<MarjaPussiMove> {
// Provide some placeholder moves
if self.done {
vec![]
} else {
self.moves.clone()
}
}
fn apply_move(&mut self, mov: &MarjaPussiMove) {
// For demonstration, just mark done if move_id is 255
if mov.move_id == 255 {
self.done = true;
} else {
// otherwise do something trivial
self.turn = (self.turn + 1) % 4;
}
}
fn clone_box(&self) -> Box<dyn MarjaPussiGameState> {
Box::new(self.clone())
}
}
fn main() -> Result<(), Box<dyn Error>> {
// Create a trivial partial-info state:
let initial_state = FakeMarjaState {
turn: 0,
done: false,
moves: vec![
MarjaPussiMove { move_id: 1 },
MarjaPussiMove { move_id: 2 },
MarjaPussiMove { move_id: 255 },
],
};
// Build a solver
let solver = PIMCSolver {
rollouts_per_move: 100,
};
// Pick a move
let chosen_move = solver.select_move(&initial_state);
println!("Chosen move = {:?}", chosen_move);
Ok(())
}