-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathairbench94_compiled.py
566 lines (481 loc) · 24.6 KB
/
airbench94_compiled.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
# airbench94_compiled.py
#
# This script is designed to reach 94% accuracy on the CIFAR-10 test-set in the shortest possible time
# after first seeing the training set. It runs in 3.09 seconds on a single NVIDIA A100.
#
# It contains the following methods:
#
# 1. The network architecture is an 8-layer convnet with whitening and identity initialization.
# * Following Page (2018), the first convolution is initialized as a frozen patch-whitening layer
# using statistics from the training images. Additionally, the logit output is downscaled and
# BatchNorm affine weights are disabled.
# * Following hlb-CIFAR10, the whitening layer has patch size 2, precedes an activation, and is
# concatenated with its negation to ensure completeness. The six remaining convolutional layers
# lack residual connections and are initialized as identity transforms wherever possible. The
# 8-layer architecture is also following hlb-CIFAR10, with reduced width in the final layer.
# * We add a learnable bias to the whitening layer, which reduces the number of steps to 94% by
# 5-10%. It converges quickly so we save time by freezing it after 3 epochs.
# 2. The training data augmentation is horizontal flipping and random two-pixel translation. The
# horizontal flipping uses novel method. At epoch one images are randomly flipped as usual.
# At epoch two we flip exactly those images which weren't flipped in the first epoch. Epoch three
# flips the same images as epoch one, four the same as two, and so on. This decreases the number
# of steps to 94% accuracy by around 10% compared to standard random flipping.
# 3. Test images are augmented with horizontal flipping, and one-pixel translation to the upper-
# left and lower-right, for a total of six forward passes per test image.
# 4. Following Page (2018) we use Nesterov SGD with a triangular learning rate schedule and increased
# learning rate for BatchNorm biases. And following hlb-CIFAR10 we use a lookahead-like scheme with
# slow decay rate at the end of training.
# 5. We use GPU-accelerated dataloading and augmentation.
# 6. We use torch.compile with mode='max-autotune'.
#
# To confirm that the mean accuracy is above 94%, we ran a test of n=1000 runs, which yielded an
# average accuracy of 94.01% (p<0.0001 for the true mean being below 94%, via t-test).
#
# The runtime of 3.09 seconds was recorded on an NVIDIA A100-SXM4-40GB with the following nvidia-smi:
# NVIDIA-SMI 525.85.12 Driver Version: 525.85.12 CUDA Version: 12.0
# torch.__version__ == '2.4.0+cu121'
#
# Note that the first time this script is run, compilation takes several minutes. See airbench94.py for
# a script with much less warmup time.
#
# This script is descended from hlb-CIFAR10 [1], which is descended from [2]. The latter was the winning
# submission to the Stanford DAWNbench competition for CIFAR-10 in 2018, with a time of 26 seconds to
# 94% accuracy on an NVIDIA V100.
#
# Version 0.7.0 of hlb-CIFAR10 [1] uses 587 TFLOPs and runs in 6.2 seconds. The final training script
# from David Page's series "How to Train Your ResNet" [2] uses 1,148 TFLOPs and runs in 14.9 seconds
# on an A100. And a standard 200-epoch ResNet18 training uses ~30,000 TFLOPs and runs in minutes.
#
# This script trains an 8-layer convnet with 2M parameters and 0.28 GFLOPs per forward pass. The entire
# training run uses 358 TFLOPs, which could theoretically take 1.15 A100-seconds at perfect GPU utilization.
#
# 1. tysam-code. "CIFAR-10 hyperlightspeedbench." https://github.com/tysam-code/hlb-CIFAR10. Jan 01 (2024).
# 2. Page, David. "How to train your resnet." Myrtle, https://myrtle.ai/learn/how-to-train-your-resnet-8-bag-of-tricks/. Sept 24 (2018).
#############################################
# Setup/Hyperparameters #
#############################################
import os
import sys
import uuid
from math import ceil
import torch
from torch import nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as T
torch.backends.cudnn.benchmark = True
# We express the main training hyperparameters (batch size, learning rate, momentum, and weight decay)
# in decoupled form, so that each one can be tuned independently. This accomplishes the following:
# * Assuming time-constant gradients, the average step size is decoupled from everything but the lr.
# * The size of the weight decay update is decoupled from everything but the wd.
# In constrast, normally when we increase the (Nesterov) momentum, this also scales up the step size
# proportionally to 1 + 1 / (1 - momentum), meaning we cannot change momentum without having to re-tune
# the learning rate. Similarly, normally when we increase the learning rate this also increases the size
# of the weight decay, requiring a proportional decrease in the wd to maintain the same decay strength.
#
# The practical impact is that hyperparameter tuning is faster, since this parametrization allows each
# one to be tuned independently. See https://myrtle.ai/learn/how-to-train-your-resnet-5-hyperparameters/.
hyp = {
'opt': {
'train_epochs': 9.9,
'batch_size': 1024,
'lr': 11.5, # learning rate per 1024 examples
'momentum': 0.85,
'weight_decay': 0.0153, # weight decay per 1024 examples (decoupled from learning rate)
'bias_scaler': 64.0, # scales up learning rate (but not weight decay) for BatchNorm biases
'label_smoothing': 0.2,
'whiten_bias_epochs': 3, # how many epochs to train the whitening layer bias before freezing
},
'aug': {
'flip': True,
'translate': 2,
},
'net': {
'widths': {
'block1': 64,
'block2': 256,
'block3': 256,
},
'batchnorm_momentum': 0.6,
'scaling_factor': 1/9,
'tta_level': 2, # the level of test-time augmentation: 0=none, 1=mirror, 2=mirror+translate
},
}
#############################################
# DataLoader #
#############################################
CIFAR_MEAN = torch.tensor((0.4914, 0.4822, 0.4465))
CIFAR_STD = torch.tensor((0.2470, 0.2435, 0.2616))
def batch_flip_lr(inputs):
flip_mask = (torch.rand(len(inputs), device=inputs.device) < 0.5).view(-1, 1, 1, 1)
return torch.where(flip_mask, inputs.flip(-1), inputs)
def batch_crop(images, crop_size):
r = (images.size(-1) - crop_size)//2
shifts = torch.randint(-r, r+1, size=(len(images), 2), device=images.device)
images_out = torch.empty((len(images), 3, crop_size, crop_size), device=images.device, dtype=images.dtype)
# The two cropping methods in this if-else produce equivalent results, but the second is faster for r > 2.
if r <= 2:
for sy in range(-r, r+1):
for sx in range(-r, r+1):
mask = (shifts[:, 0] == sy) & (shifts[:, 1] == sx)
images_out[mask] = images[mask, :, r+sy:r+sy+crop_size, r+sx:r+sx+crop_size]
else:
images_tmp = torch.empty((len(images), 3, crop_size, crop_size+2*r), device=images.device, dtype=images.dtype)
for s in range(-r, r+1):
mask = (shifts[:, 0] == s)
images_tmp[mask] = images[mask, :, r+s:r+s+crop_size, :]
for s in range(-r, r+1):
mask = (shifts[:, 1] == s)
images_out[mask] = images_tmp[mask, :, :, r+s:r+s+crop_size]
return images_out
class CifarLoader:
def __init__(self, path, train=True, batch_size=500, aug=None, drop_last=None, shuffle=None, gpu=0):
data_path = os.path.join(path, 'train.pt' if train else 'test.pt')
if not os.path.exists(data_path):
dset = torchvision.datasets.CIFAR10(path, download=True, train=train)
images = torch.tensor(dset.data)
labels = torch.tensor(dset.targets)
torch.save({'images': images, 'labels': labels, 'classes': dset.classes}, data_path)
data = torch.load(data_path, map_location=torch.device(gpu))
self.images, self.labels, self.classes = data['images'], data['labels'], data['classes']
# It's faster to load+process uint8 data than to load preprocessed fp16 data
self.images = (self.images.half() / 255).permute(0, 3, 1, 2).to(memory_format=torch.channels_last)
self.normalize = T.Normalize(CIFAR_MEAN, CIFAR_STD)
self.proc_images = {} # Saved results of image processing to be done on the first epoch
self.epoch = 0
self.aug = aug or {}
for k in self.aug.keys():
assert k in ['flip', 'translate'], 'Unrecognized key: %s' % k
self.batch_size = batch_size
self.drop_last = train if drop_last is None else drop_last
self.shuffle = train if shuffle is None else shuffle
def __len__(self):
return len(self.images)//self.batch_size if self.drop_last else ceil(len(self.images)/self.batch_size)
def __iter__(self):
if self.epoch == 0:
images = self.proc_images['norm'] = self.normalize(self.images)
# Pre-flip images in order to do every-other epoch flipping scheme
if self.aug.get('flip', False):
images = self.proc_images['flip'] = batch_flip_lr(images)
# Pre-pad images to save time when doing random translation
pad = self.aug.get('translate', 0)
if pad > 0:
self.proc_images['pad'] = F.pad(images, (pad,)*4, 'reflect')
if self.aug.get('translate', 0) > 0:
images = batch_crop(self.proc_images['pad'], self.images.shape[-2])
elif self.aug.get('flip', False):
images = self.proc_images['flip']
else:
images = self.proc_images['norm']
# Flip all images together every other epoch. This increases diversity relative to random flipping
if self.aug.get('flip', False):
if self.epoch % 2 == 1:
images = images.flip(-1)
self.epoch += 1
indices = (torch.randperm if self.shuffle else torch.arange)(len(images), device=images.device)
for i in range(len(self)):
idxs = indices[i*self.batch_size:(i+1)*self.batch_size]
yield (images[idxs], self.labels[idxs])
#############################################
# Network Components #
#############################################
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
class Mul(nn.Module):
def __init__(self, scale):
super().__init__()
self.scale = scale
def forward(self, x):
return x * self.scale
class BatchNorm(nn.BatchNorm2d):
def __init__(self, num_features, momentum, eps=1e-12,
weight=False, bias=True):
super().__init__(num_features, eps=eps, momentum=1-momentum)
self.weight.requires_grad = weight
self.bias.requires_grad = bias
# Note that PyTorch already initializes the weights to one and bias to zero
class Conv(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size=3, padding='same', bias=False):
super().__init__(in_channels, out_channels, kernel_size=kernel_size, padding=padding, bias=bias)
def reset_parameters(self):
super().reset_parameters()
if self.bias is not None:
self.bias.data.zero_()
w = self.weight.data
torch.nn.init.dirac_(w[:w.size(1)])
class ConvGroup(nn.Module):
def __init__(self, channels_in, channels_out, batchnorm_momentum):
super().__init__()
self.conv1 = Conv(channels_in, channels_out)
self.pool = nn.MaxPool2d(2)
self.norm1 = BatchNorm(channels_out, batchnorm_momentum)
self.conv2 = Conv(channels_out, channels_out)
self.norm2 = BatchNorm(channels_out, batchnorm_momentum)
self.activ = nn.GELU()
def forward(self, x):
x = self.conv1(x)
x = self.pool(x)
x = self.norm1(x)
x = self.activ(x)
x = self.conv2(x)
x = self.norm2(x)
x = self.activ(x)
return x
#############################################
# Network Definition #
#############################################
def make_net():
widths = hyp['net']['widths']
batchnorm_momentum = hyp['net']['batchnorm_momentum']
whiten_kernel_size = 2
whiten_width = 2 * 3 * whiten_kernel_size**2
net = nn.Sequential(
Conv(3, whiten_width, whiten_kernel_size, padding=0, bias=True),
nn.GELU(),
ConvGroup(whiten_width, widths['block1'], batchnorm_momentum),
ConvGroup(widths['block1'], widths['block2'], batchnorm_momentum),
ConvGroup(widths['block2'], widths['block3'], batchnorm_momentum),
nn.MaxPool2d(3),
Flatten(),
nn.Linear(widths['block3'], 10, bias=False),
Mul(hyp['net']['scaling_factor']),
)
net[0].weight.requires_grad = False
net = net.half().cuda()
net = net.to(memory_format=torch.channels_last)
for mod in net.modules():
if isinstance(mod, BatchNorm):
mod.float()
return net
def reinit_net(model):
for m in model.modules():
if type(m) in (Conv, BatchNorm, nn.Linear):
m.reset_parameters()
#############################################
# Whitening Conv Initialization #
#############################################
def get_patches(x, patch_shape):
c, (h, w) = x.shape[1], patch_shape
return x.unfold(2,h,1).unfold(3,w,1).transpose(1,3).reshape(-1,c,h,w).float()
def get_whitening_parameters(patches):
n,c,h,w = patches.shape
patches_flat = patches.view(n, -1)
est_patch_covariance = (patches_flat.T @ patches_flat) / n
eigenvalues, eigenvectors = torch.linalg.eigh(est_patch_covariance, UPLO='U')
return eigenvalues.flip(0).view(-1, 1, 1, 1), eigenvectors.T.reshape(c*h*w,c,h,w).flip(0)
def init_whitening_conv(layer, train_set, eps=5e-4):
patches = get_patches(train_set, patch_shape=layer.weight.data.shape[2:])
eigenvalues, eigenvectors = get_whitening_parameters(patches)
eigenvectors_scaled = eigenvectors / torch.sqrt(eigenvalues + eps)
layer.weight.data[:] = torch.cat((eigenvectors_scaled, -eigenvectors_scaled))
############################################
# Lookahead #
############################################
class LookaheadState:
def __init__(self, net):
self.net_ema = {k: v.clone() for k, v in net.state_dict().items()}
def update(self, net, decay):
for ema_param, net_param in zip(self.net_ema.values(), net.state_dict().values()):
if net_param.dtype in (torch.half, torch.float):
ema_param.lerp_(net_param, 1-decay)
net_param.copy_(ema_param)
############################################
# Logging #
############################################
def print_columns(columns_list, is_head=False, is_final_entry=False):
print_string = ''
for col in columns_list:
print_string += '| %s ' % col
print_string += '|'
if is_head:
print('-'*len(print_string))
print(print_string)
if is_head or is_final_entry:
print('-'*len(print_string))
logging_columns_list = ['run ', 'epoch', 'train_loss', 'train_acc', 'val_acc', 'tta_val_acc', 'total_time_seconds']
def print_training_details(variables, is_final_entry):
formatted = []
for col in logging_columns_list:
var = variables.get(col.strip(), None)
if type(var) in (int, str):
res = str(var)
elif type(var) is float:
res = '{:0.4f}'.format(var)
else:
assert var is None
res = ''
formatted.append(res.rjust(len(col)))
print_columns(formatted, is_final_entry=is_final_entry)
############################################
# Evaluation #
############################################
def infer(model, loader, tta_level=0):
# Test-time augmentation strategy (for tta_level=2):
# 1. Flip/mirror the image left-to-right (50% of the time).
# 2. Translate the image by one pixel either up-and-left or down-and-right (50% of the time,
# i.e. both happen 25% of the time).
#
# This creates 6 views per image (left/right times the two translations and no-translation),
# which we evaluate and then weight according to the given probabilities.
def infer_basic(inputs, net):
return net(inputs).clone()
def infer_mirror(inputs, net):
return 0.5 * net(inputs) + 0.5 * net(inputs.flip(-1))
def infer_mirror_translate(inputs, net):
logits = infer_mirror(inputs, net)
pad = 1
padded_inputs = F.pad(inputs, (pad,)*4, 'reflect')
inputs_translate_list = [
padded_inputs[:, :, 0:32, 0:32],
padded_inputs[:, :, 2:34, 2:34],
]
logits_translate_list = [infer_mirror(inputs_translate, net)
for inputs_translate in inputs_translate_list]
logits_translate = torch.stack(logits_translate_list).mean(0)
return 0.5 * logits + 0.5 * logits_translate
model.eval()
test_images = loader.normalize(loader.images)
infer_fn = [infer_basic, infer_mirror, infer_mirror_translate][tta_level]
with torch.no_grad():
return torch.cat([infer_fn(inputs, model) for inputs in test_images.split(2000)])
def evaluate(model, loader, tta_level=0):
logits = infer(model, loader, tta_level)
return (logits.argmax(1) == loader.labels).float().mean().item()
############################################
# Training #
############################################
def main(run, model_trainbias, model_freezebias):
batch_size = hyp['opt']['batch_size']
epochs = hyp['opt']['train_epochs']
momentum = hyp['opt']['momentum']
# Assuming gradients are constant in time, for Nesterov momentum, the below ratio is how much
# larger the default steps will be than the underlying per-example gradients. We divide the
# learning rate by this ratio in order to ensure steps are the same scale as gradients, regardless
# of the choice of momentum.
kilostep_scale = 1024 * (1 + 1 / (1 - momentum))
lr = hyp['opt']['lr'] / kilostep_scale # un-decoupled learning rate for PyTorch SGD
wd = hyp['opt']['weight_decay'] * batch_size / kilostep_scale
lr_biases = lr * hyp['opt']['bias_scaler']
loss_fn = nn.CrossEntropyLoss(label_smoothing=hyp['opt']['label_smoothing'], reduction='none')
test_loader = CifarLoader('cifar10', train=False, batch_size=2000)
train_loader = CifarLoader('cifar10', train=True, batch_size=batch_size, aug=hyp['aug'])
if run == 'warmup':
# The only purpose of the first run is to warmup the compiled model, so we can use dummy data
train_loader.labels = torch.randint(0, 10, size=(len(train_loader.labels),), device=train_loader.labels.device)
total_train_steps = ceil(len(train_loader) * epochs)
# Reinitialize the network from scratch - nothing is reused from previous runs besides the PyTorch compilation
reinit_net(model_trainbias)
current_steps = 0
norm_biases = [p for k, p in model_trainbias.named_parameters() if 'norm' in k]
other_params = [p for k, p in model_trainbias.named_parameters() if 'norm' not in k]
param_configs = [dict(params=norm_biases, lr=lr_biases, weight_decay=wd/lr_biases),
dict(params=other_params, lr=lr, weight_decay=wd/lr)]
optimizer_trainbias = torch.optim.SGD(param_configs, momentum=momentum, nesterov=True)
norm_biases = [p for k, p in model_freezebias.named_parameters() if 'norm' in k]
other_params = [p for k, p in model_freezebias.named_parameters() if 'norm' not in k]
param_configs = [dict(params=norm_biases, lr=lr_biases, weight_decay=wd/lr_biases),
dict(params=other_params, lr=lr, weight_decay=wd/lr)]
optimizer_freezebias = torch.optim.SGD(param_configs, momentum=momentum, nesterov=True)
def get_lr(step):
warmup_steps = int(total_train_steps * 0.23)
warmdown_steps = total_train_steps - warmup_steps
if step < warmup_steps:
frac = step / warmup_steps
return 0.2 * (1 - frac) + 1.0 * frac
else:
frac = (step - warmup_steps) / warmdown_steps
return 1.0 * (1 - frac) + 0.07 * frac
scheduler_trainbias = torch.optim.lr_scheduler.LambdaLR(optimizer_trainbias, get_lr)
scheduler_freezebias = torch.optim.lr_scheduler.LambdaLR(optimizer_freezebias, get_lr)
alpha_schedule = 0.95**5 * (torch.arange(total_train_steps+1) / total_train_steps)**3
lookahead_state = LookaheadState(model_trainbias)
# For accurately timing GPU code
starter = torch.cuda.Event(enable_timing=True)
ender = torch.cuda.Event(enable_timing=True)
total_time_seconds = 0.0
# Initialize the whitening layer using training images
starter.record()
train_images = train_loader.normalize(train_loader.images[:5000])
init_whitening_conv(model_trainbias._orig_mod[0], train_images)
ender.record()
torch.cuda.synchronize()
total_time_seconds += 1e-3 * starter.elapsed_time(ender)
for epoch in range(ceil(epochs)):
# After training the whiten bias for some epochs, swap in the compiled model with frozen bias
if epoch == 0:
model = model_trainbias
optimizer = optimizer_trainbias
scheduler = scheduler_trainbias
elif epoch == hyp['opt']['whiten_bias_epochs']:
model = model_freezebias
optimizer = optimizer_freezebias
scheduler = scheduler_freezebias
model.load_state_dict(model_trainbias.state_dict())
optimizer.load_state_dict(optimizer_trainbias.state_dict())
scheduler.load_state_dict(scheduler_trainbias.state_dict())
####################
# Training #
####################
starter.record()
model.train()
for inputs, labels in train_loader:
outputs = model(inputs)
loss = loss_fn(outputs, labels).sum()
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
scheduler.step()
current_steps += 1
if current_steps % 5 == 0:
lookahead_state.update(model, decay=alpha_schedule[current_steps].item())
if current_steps >= total_train_steps:
if lookahead_state is not None:
lookahead_state.update(model, decay=1.0)
break
ender.record()
torch.cuda.synchronize()
total_time_seconds += 1e-3 * starter.elapsed_time(ender)
####################
# Evaluation #
####################
# Save the accuracy and loss from the last training batch of the epoch
train_acc = (outputs.detach().argmax(1) == labels).float().mean().item()
train_loss = loss.item() / batch_size
val_acc = evaluate(model, test_loader, tta_level=0)
print_training_details(locals(), is_final_entry=False)
run = None # Only print the run number once
####################
# TTA Evaluation #
####################
starter.record()
tta_val_acc = evaluate(model, test_loader, tta_level=hyp['net']['tta_level'])
ender.record()
torch.cuda.synchronize()
total_time_seconds += 1e-3 * starter.elapsed_time(ender)
epoch = 'eval'
print_training_details(locals(), is_final_entry=True)
return tta_val_acc
if __name__ == "__main__":
with open(sys.argv[0]) as f:
code = f.read()
# These two compiled models are first warmed up, and then reinitialized every run. No learned
# weights are reused between runs. To implement freezing of the whitening-layer bias parameter
# midway through training, we use two compiled models, one with trainable and the other with
# frozen whitening bias. This is faster than the naive approach of setting requires_grad=False
# on the whitening bias midway through training on a single compiled model.
model_trainbias = make_net()
model_freezebias = make_net()
model_freezebias[0].bias.requires_grad = False
model_trainbias = torch.compile(model_trainbias, mode='max-autotune')
model_freezebias = torch.compile(model_freezebias, mode='max-autotune')
print_columns(logging_columns_list, is_head=True)
main('warmup', model_trainbias, model_freezebias)
accs = torch.tensor([main(run, model_trainbias, model_freezebias) for run in range(25)])
print('Mean: %.4f Std: %.4f' % (accs.mean(), accs.std()))
log = {'code': code, 'accs': accs}
log_dir = os.path.join('logs', str(uuid.uuid4()))
os.makedirs(log_dir, exist_ok=True)
log_path = os.path.join(log_dir, 'log.pt')
print(os.path.abspath(log_path))
torch.save(log, os.path.join(log_dir, 'log.pt'))