diff --git a/README.md b/README.md index a78ee47..7a658d7 100644 --- a/README.md +++ b/README.md @@ -29,7 +29,7 @@ the `hcubature` function: ### `hcubature` - hcubature(f, a, b; norm=vecnorm, rtol=sqrt(eps), atol=0, maxevals=typemax(Int)) + hcubature(f, a, b; norm=norm, rtol=sqrt(eps), atol=0, maxevals=typemax(Int)) This computes the n-dimensional integral of f(x), where `n == length(a) == length(b)`, over the hypercube whose corners are given by the vectors (or tuples) `a` and `b`. @@ -68,13 +68,13 @@ of the coordinate type `T` described above. The error is estimated by `norm(I - I′)`, where `I′` is an alternative estimated integral (via an "embedded" lower-order cubature rule.) By default, the `norm` function used (for both this and the convergence -test above) is `vecnorm`, but you can pass an alternative norm by +test above) is `norm`, but you can pass an alternative norm by the `norm` keyword argument. (This is especially useful when `f` returns a vector of integrands with different scalings.) ### `hquadrature` - hquadrature(f, a, b; norm=vecnorm, rtol=sqrt(eps), atol=0, maxevals=typemax(Int)) + hquadrature(f, a, b; norm=norm, rtol=sqrt(eps), atol=0, maxevals=typemax(Int)) Compute the (1d) integral of f(x) from `a` to `b`. The return value of `hcubature` is a tuple `(I, E)` of the estimated integral