-
Notifications
You must be signed in to change notification settings - Fork 6
/
settings.cfg
336 lines (262 loc) · 10.3 KB
/
settings.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
#*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*#
#* COFFE parameter file *#
#*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*#
###############
#(1): Input #
###############
### (1.a)
# the separations can be parsed in two ways:
# a) min, max, step
# b) min, max, sampling
separations_min = 5.
separations_max = 305.
separations_sampling = 10
### (1.b)
# file containing the power spectrum
# NOTE: file containing spectrum must have two columns;
# allowed separators are ' ', ',', '\t' (tabs), or ':';
# k must be in h/Mpc, and P(k) must be in (Mpc/h)^3
input_power_spectrum = "PkL_CLASS.dat";
# should the power spectrum be windowed by a real-space spherical top hat?
# possible values: int: 0, 1
have_window = 0
# if have_window is set to 1, the size of the window (in Mpc/h)
# possible values: double x: x>0, x<1000
window_size = 5
### (1.c)
# cold dark matter density, baryon density, and radiation density parameter
# NOTE: dark energy density parameter is computed from
# the closure relation sum(Omega) + Omega(DE) = 1
omega_m = 0.3;
omega_baryon = 0.05;
omega_gamma = 9e-5;
### (1.d)
# equation of state for dark energy, parametrised as w(z) = w0 + wa z/(1+z)
w0 = -1.0;
wa = 0.0;
### (1.e)
# galaxy bias, magnification bias and evolution bias
# either a constant value or read a file containing the bias as a function of redshift (in ascending redshift)
# "1" and "2" label the galaxies populations
galaxy_bias1 = 1.;
read_galaxy_bias1 = 0;
input_galaxy_bias1 = "";
galaxy_bias2 = 1.;
read_galaxy_bias2 = 0;
input_galaxy_bias2 = "";
magnification_bias1 = 0.;
read_magnification_bias1 = 0;
input_magnification_bias1 = "";
magnification_bias2 = 0.;
read_magnification_bias2 = 0;
input_magnification_bias2 = "";
evolution_bias1 = 0.;
read_evolution_bias1 = 0;
input_evolution_bias1 = "";
evolution_bias2 = 0.;
read_evolution_bias2 = 0;
input_evolution_bias2 = "";
### (1.f)
# parameter for the covariance
# respectively: the pixel size (in Mpc/h), the mean number density at z_mean (in (h/Mpc)^3) and the sky coverage of the catalog
covariance_z_mean = [0.5, 1.0, 1.5];
covariance_deltaz = [0.1, 0.1, 0.2];
covariance_density = [0.1, 0.2, 0.01];
covariance_fsky = [0.3, 0.5, 0.2];
covariance_pixelsize = [10.0, 10.0, 10.0];
# what is the step size for the covariance?
# can be different from pixelsize
# default: 10.0
covariance_step_size = 10.0;
covariance_zmin = [2.0, 2.2, 2.3];
covariance_zmax = [2.5, 2.8, 2.5];
# minimum separation for the covariance (in Mpc/h)
# can be different from pixelsize
# default: 20.0
covariance_minimum_separation = 20.0
# should the covariance be windowed (see e.g. arXiv:1509.04293, eq. 18)?
# N.B. if set to 1, the size of the window is controlled by covariance_pixelsize
# default: 0 (no)
covariance_window = 0;
# how should COFFE compute the covariance?
# possible values:
# 1 - GSL integration
# 2 - 2D FFT log integration (described in arXiv:2004.04833)
# default: 1
covariance_integration_method = 1
# if the integration method is FFT log, this specifies how many points to use
# N.B. the memory usage and run time is proportional to the below squared,
# so with ~10^4 bins, you need to have at least 5 GB of RAM available
# since one needs at least 10000^2 x 8 / 1024^2 MB ~ 750 MB
# to just store the result (not including the space for interpolating it)
covariance_integration_bins = 8000
# if using FFT log, the method for 2D interpolating the covariance
# possible values:
# 1 - bilinear
# 2 - bicubic
# default: 2
covariance_interpolation_method = 2
###############
#(2): Output #
###############
### (2.a)
# the relative or absolute path of output; if directory doesn't exist, COFFE will try to create it
# a prefix can be appended to the standard outputs; if it's "$TIME", then it appends the timestamp
# in the format "YYYY-MM-DD-HH-mm-ss_". Note that COFFE may overwrite previous results, it is up to the user
# to make sure the path doesn't already exist!
output_path = "results/";
output_prefix = "$TIME";
### (2.b)
# which projection effect to take into account (see 1708.00492 for details), possible values are:
# den = density
# rsd = redshift space distortion
# d1, d2 = nonintegrated Doppler terms
# g1, g2, g3 = nonintegrated gravitational potential terms
# g4, g5 = integrated gravitational potential terms
# len = integrated lensing term
# NOTE: the correlation calculated for types A and B is automatically A*A + A*B + B*A + B*B,
# unless the value of only_cross_correlations is 1, in which case it computes A*B + B*A only
# default: ["den"]
correlation_contributions = ["den"];
### (2.c)
# for output - specify if you want:
# (see the User guide for details)
# (0) angular correlation function
# (1) correlation function as function of mean redshift, angles, and separation
# (2) multipoles as function of l, mean redshift, and separation
# (3) average multipoles as function of l and separation
# (4) covariance of multipoles
# (5) covariance of redshift averaged multipoles
# (6) 2D correlation function as a function of r_parallel and r_perpendicular
output_type = 2;
# do we only want to consider cross-correlations in the estimator (2PCF, multipoles, etc.)?
# possible values:
# 0 - consider auto-correlations and cross-correlations in estimator
# 1 - consider only cross-correlations in estimator
# default: 0
only_cross_correlations = 0;
### (2.d)
# if output_type is not 3, the mean redshift for which to calculate the output
z_mean = [1.0];
### (2.e)
# the thickness of the redshift bin for which we calculate
# the output; cannot be negative or larger than z_mean for obvious reasons
deltaz = [0.2];
z_min = 0.9;
z_max = 1.1;
### (2.f)
# the list of angles for which we compute the 2PCF
# only needed if output_type = 1
mu = [0.7];
### (2.g)
# needed if output_type = 2, 3, 4 or 5
# multipoles you want to compute: 0=monopole, 2=quadrupole, 4=hexadecapole, 6=tetrahexadecapole, etc.
# odd multipoles are supported in the signal, but not yet in the covariance
multipoles = [0, 2, 4];
### (2.h)
# optional: which background quantities to output; possible values are:
# z = redshift
# a = scale factor
# H = Hubble rate
# conformal_H = conformal Hubble rate
# conformal_H_prime = derivative of conformal Hubble rate w.r.t. conformal time
# D1 = growth function
# f = derivative d(ln D1)/d(ln a)
# comoving_distance
# NOTE: they will be written into the file in the same order as given here
output_background = ["z", "a", "H", "conformal_H", "conformal_H_prime", "D1", "f", "comoving_distance"];
### (2.i)
# should the contributions be computed using the flatsky approximation?
# possible values: int: 0 (no), 1 (yes)
# default: 0
# for density|RSD|d1-lensing + lensing-density|RSD|d1
# NOTE: the contributions RSD-lensing, d1-lensing, lensing-RSD, and lensing-d1
# are identically zero
# NOTE: has no effect on the following terms: d2, g1, g2, g3, g4, g5
flatsky_local_nonlocal = 0;
# for lensing-lensing
# NOTE: has no effect on the following terms: g4, g5
flatsky_nonlocal = 0;
# for density-density, rsd-rsd, density-rsd, d1-d1, density-d1, and rsd-d1
# NOTE: has no effect on the following terms: d2, g1, g2, g3
flatsky_local = 0;
###########################
#(3): Precision settings #
###########################
### (3.a)
# the sampling rate for the background; about 1 second to sample 10000 points
background_sampling = 10000;
### (3.b)
# for how many points to compute the integral of P(k) k^2 j_l(kr) (NOTE: runtime is <1 s for 10000 points)
bessel_sampling = 10000;
### (3.c)
# the sampling for the angular correlation function (between 0 and pi/2)
# only needed if output_type = 0
theta_sampling = 3000;
### (3.d)
# double integrated terms are computed using monte carlo methods from GSL;
# the available methods are:
# 0 - standard random sampling
# 1 - MISER algorithm of Press and Farrar; based on recursive stratified sampling
# 2 - VEGAS algorithm of Lepage; based on importance sampling
# NOTE: if CUBA is used, only the integration_len parameter is needed
# reference: about 60000 for correlation function,
# 300000 for multipoles, more for redshift-averaged multipoles
integration_method = 2;
integration_sampling = 750000;
### (3.e)
# optional: the range of integration for the integral
# over the power spectrum
# NOTE: the range should be -smaller- than the one
# read from the file, otherwise the range from the file
# will be used instead
# NOTE: must be in h/Mpc
k_min = 1e-5;
k_max = 300.;
### (3.f)
# the interpolation type for all interpolation variables
# possible values (taken from GSL v2.4 manual):
# 1 - linear
# 2 - polynomial
# 3 - cubic spline with natural boundary conditions
# 4 - cubic spline with periodic boundary conditions
# 5 - non-rounded Akima spline with natural boundary conditions
# 6 - non-rounded Akima spline with periodic boundary conditions
# 7 - monotone cubic spline, described in:
# M. Steffen, A simple method for monotonic interpolation in one dimension, Astron. Astrophys. 239, 443-450, 1990.
interpolation = 5;
### (4.a)
# should CLASS be used to generate the linear matter power spectrum on the fly? 1 for yes, 0 for no
# NOTE: CLASS MUST be linked at compile time, otherwise setting this has no effect!
have_class = 1;
# Hubble constant divided by 100
# only has an effect if have_class = 1
h = 0.67;
# pivot scale of the dimensionless scalar primordial power spectrum, in 1/Mpc
# only has an effect if have_class = 1
k_pivot = 0.05;
# ln (10^{10} A_s), where A_s is the amplitude of the dimensionless scalar primordial power spectrum
# only has an effect if have_class = 1
sigma8 = 0.8156;
# spectral index of the dimensionless scalar primordial power spectrum
# only has an effect if have_class = 1
n_s = 0.96;
# should the output be verbose or not?
# possible values:
# 0 - only errors and warning are displayed
# 1 - reports what is being calculated and the time taken, as well as where the output is saved
# default: 1
verbose = 1;
# EXPERIMENTAL
# if have_class = 1, how should the matter power spectrum be generated?
# 0 - only compute the linear matter power spectrum at z = 0 (uses growth rate D1 to compute at other redshits)
# WARNING: the below 3 values may take a long time, especially for full-sky integrated terms!
# 1 - compute linear matter power spectrum at each redshift
# 2 - use halofit model to compute the matter power spectrum at each redshift
# 3 - use hmcode model to compute the matter power spectrum at each redshift
# default: 0
pk_type = 0;
b_derivative = 0;
f_derivative = 0;
b_tilde_derivative = 0;
f_tilde_derivative = 0;