-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapbslave.v
289 lines (257 loc) · 8.38 KB
/
apbslave.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
//
// Verilog Module HT1_lib.apbslave
//
// Created:
// by - NadavHugi.UNKNOWN (DESKTOP-9P9608N)
// at - 15:04:10 02/03/2024
//
// using Mentor Graphics HDL Designer(TM) 2021.1 Built on 14 Jan 2021 at 15:11:42
//
`timescale 1ns/1ps
// These are text replacements for Readability and versatility.
`define ADDR_CONTROL_REG 5'b00000
`define ADDR_OP_A 5'b00100
`define ADDR_OP_B 5'b01000
`define ADDR_RES_FLAGS 5'b01100
`define ADDR_SP_1 5'b10000
`define ADDR_SP_2 5'b10100
`define ADDR_SP_3 5'b11000
`define ADDR_SP_4 5'b11100
module apbslave# (
parameter DW = 8, // Size of each piece of data.
parameter BW = 32, // Bus Width.
parameter ADDR_W = 16, // Address Width.
parameter SP_NTARGETS = 4,
parameter MAX_DIM = BW/DW,
parameter MAX_MAX_DIM = 4, // Maximum dimension.
parameter Elements_Num = MAX_DIM*MAX_DIM // How many elements in total.
)
(
input wire clk_i,
input wire reset_ni,
input wire psel_i,
input wire penable_i,
input wire pwrite_i, // Allows us to write data.
input wire [MAX_DIM-1:0] pstrb_i, // Chooses specific data bits.
input wire [BW-1:0] pwdata_i, // The data we write.
input wire [ADDR_W-1:0] paddr_i, // The address where we write data.
input wire [Elements_Num-1:0] of_i, // Overflow bis.
input wire done_i, // Tells us when we're done.
input wire [BW*Elements_Num-1:0] result_i, // The result of our work.
output wire [BW*MAX_DIM-1:0] operand_A_o, // Output for operand A.
output wire [BW*MAX_DIM-1:0] operand_B_o, // Output for operand B.
output reg [BW*Elements_Num-1:0] operand_C_o, // Output for operand C.
output wire [15:0] control_reg_o, // Control register output.
output reg pready_o, // Tells us when ready.
output reg pslverr_o, // Tells us if there's an error.
output reg [BW-1:0] prdata_o, // Data output.
output reg busy_o // Tells us if it's busy.
);
parameter STATE_IDLE = 2'b00, STATE_WRITE = 2'b01, STATE_READ = 2'b10, STATE_OPERATING = 2'b11; //pragma enum_current_state
localparam SP_ADDR_WIDTH = MAX_DIM > 2 ? 4 : 2;
localparam OP_ADDR_WIDTH = MAX_DIM > 2 ? 2 : 1;
reg [1:0] current_state;
reg [BW*Elements_Num-1:0] result_reg;
reg [15:0] control_reg;
reg [Elements_Num-1:0] flags_reg;
wire start_bit_i;
wire [BW - 1:0] result_mat [Elements_Num-1:0];
wire [OP_ADDR_WIDTH-1:0] op_addr;
reg [BW-1:0] data_in_op_a;
reg [BW-1:0] data_in_op_b;
wire [BW*MAX_DIM-1:0] op_a_mat_sig;
wire [BW*MAX_DIM-1:0] op_b_mat_sig;
wire [BW-1:0] op_a_sig_row_o;
wire [BW-1:0] op_b_sig_row_o;
reg [BW-1:0] sp_data_in;
reg [SP_ADDR_WIDTH-1:0] sp_addr;
wire [BW*Elements_Num-1:0] sp_op;
wire unused; // Declare the wire
wire [BW-1:0] sp_data_o;
reg op_en_a_i;
reg op_en_b_i;
reg op_en_sp_i;
localparam DIM_IDX = $clog2(MAX_DIM);
assign op_addr = paddr_i[OP_ADDR_WIDTH - 1 + 5:5];
assign start_bit_i = control_reg[0];
assign control_reg_o = control_reg;
assign operand_A_o = op_a_mat_sig;
assign operand_B_o = op_b_mat_sig;
assign unused = 1'b0; // Assign a default value to the wire
integer count_w;
integer i;
generate
if(MAX_DIM < MAX_MAX_DIM) begin: GEN_LABEL
// Instantiate operand_a and operand_b with the unused wire connected to addr
reg_file_op #(.DW(DW), .MAX_DIM(MAX_DIM)) operand_a (
.clk_i(clk_i),
.reset_ni(reset_ni),
.addr({unused, op_addr}),
.data_i(data_in_op_a),
.ena_i(op_en_a_i),
.pstrb_i(pstrb_i),
.row_bus_o(op_a_sig_row_o),
.mat_o(op_a_mat_sig)
);
reg_file_op #(.DW(DW), .MAX_DIM(MAX_DIM)) operand_b (
.clk_i(clk_i),
.reset_ni(reset_ni),
.addr({unused, op_addr}),
.data_i(data_in_op_b),
.ena_i(op_en_b_i),
.pstrb_i(pstrb_i),
.row_bus_o(op_b_sig_row_o),
.mat_o(op_b_mat_sig)
);
end else begin
// Instantiate operand_a and operand_b normally
reg_file_op #(.DW(DW), .MAX_DIM(MAX_DIM)) operand_a (
.clk_i(clk_i),
.reset_ni(reset_ni),
.addr(op_addr),
.data_i(data_in_op_a),
.ena_i(op_en_a_i),
.pstrb_i(pstrb_i),
.row_bus_o(op_a_sig_row_o),
.mat_o(op_a_mat_sig)
);
reg_file_op #(.DW(DW), .MAX_DIM(MAX_DIM)) operand_b (
.clk_i(clk_i),
.reset_ni(reset_ni),
.addr(op_addr),
.data_i(data_in_op_b),
.ena_i(op_en_b_i),
.pstrb_i(pstrb_i),
.row_bus_o(op_b_sig_row_o),
.mat_o(op_b_mat_sig)
);
end
endgenerate
scrachpad #(.BW(BW), .MAX_DIM(MAX_DIM),.SPN(SP_NTARGETS),.ADDR_W(SP_ADDR_WIDTH)) sp (
.clk_i(clk_i),
.reset_ni(reset_ni),
.addr(sp_addr),
.bus_mat_sel(paddr_i[4:0]),
.data_i(sp_data_in),
.ena_i(op_en_sp_i),
.mat_to_read(control_reg[5:4]),
.element_w_sel(control_reg[3:2]),
.row_sp_o(sp_data_o),
.mat_sp_o(sp_op)
);
// This part of the code decides what to do based on the current state.
always @(negedge reset_ni or posedge clk_i) begin : FSM
if (!reset_ni) begin
current_state <= STATE_IDLE;
prdata_o <= 32'b0;
pready_o <= 1'b0;
pslverr_o <= 1'b0;
result_reg <= 0;
end
else begin
case (current_state)
STATE_IDLE : begin
op_en_a_i <= 1'b0;
op_en_b_i <= 1'b0;
op_en_sp_i<= 1'b0;
prdata_o <= 32'b0;
pready_o <= 1'b0;
pslverr_o <= 1'b0;
if (penable_i && psel_i && !start_bit_i) begin
if (pwrite_i) begin
current_state <= STATE_WRITE;
end
else begin
current_state <= STATE_READ;
end
end
else if (start_bit_i) begin
busy_o <= 1;
count_w <= 0;
current_state <= STATE_OPERATING;
end
end
STATE_READ : begin
if (!pwrite_i) begin
pready_o <= 1;
case (paddr_i[4:0])
`ADDR_CONTROL_REG: begin
prdata_o[15:0] <= control_reg;
end
`ADDR_OP_A: begin
prdata_o <= op_a_sig_row_o;
end
`ADDR_OP_B: begin
prdata_o <= op_b_sig_row_o;
end
`ADDR_RES_FLAGS: begin
prdata_o[Elements_Num - 1:0] <= flags_reg;
end
`ADDR_SP_1, `ADDR_SP_2, `ADDR_SP_3, `ADDR_SP_4: begin
sp_addr <= paddr_i[5 + SP_ADDR_WIDTH - 1:5];
prdata_o <= sp_data_o;
end
default: begin
// This part is just for practice.
end
endcase
end
current_state <= STATE_IDLE;
end
STATE_WRITE : begin
if (pwrite_i) begin
pready_o <= 1;
case (paddr_i[4:0])
`ADDR_CONTROL_REG: begin
control_reg <= pwdata_i[15:0];
end
`ADDR_OP_A: begin
op_en_a_i <= 1'b1;
data_in_op_a <= pwdata_i;
end
`ADDR_OP_B: begin
op_en_b_i <= 1'b1;
data_in_op_b <= pwdata_i;
end
default: begin
// This part is also just for practice.
end
endcase
end
current_state <= STATE_IDLE;
end
STATE_OPERATING : begin
// Decides what to do with the result.
operand_C_o <= (control_reg[1] ? sp_op : {BW*Elements_Num{1'b0}});
if (penable_i && psel_i) begin
pslverr_o <= 1'b1; // Tells us if there's an error.
end
result_reg <= result_i; // Stores the result.
if (done_i) begin // Checks if we are done.
if (count_w < {20'b0, Elements_Num}) begin
op_en_sp_i <= 1'b1;
if (SP_ADDR_WIDTH == 4) begin
sp_addr <= count_w[3:0]; // Select 4 least significant bits
end else if (SP_ADDR_WIDTH == 2) begin
sp_addr <= count_w[1:0]; // Select 2 least significant bits
end
sp_data_in <= result_reg[BW-1:0]; // Uses the lowest part of the result.
result_reg <= result_reg >> BW; // Prepares the next part of the result.
count_w <= count_w + 1;
end
else begin
// Updates flags and resets control for next operation.
flags_reg <= of_i;
control_reg[0] <= 1'b0;
busy_o <= 1'b0;
current_state <= STATE_IDLE;
end
end
end
default: begin
// Again, this part is just for practice.
end
endcase
end
end
endmodule