-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_one_hot.py
141 lines (113 loc) · 3.99 KB
/
main_one_hot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
from argparse import Namespace
from datetime import datetime
from json import loads
import torch
from omegaconf import OmegaConf
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.loggers import CSVLogger
from pytorch_lightning.strategies.ddp import DDPStrategy
from utils.benthicnet_dataset import gen_datasets
from utils.utils import (
construct_dataloaders,
construct_one_hot_model,
get_augs,
get_df,
one_hot_parser,
process_one_hot_df,
set_seed,
)
def main():
args = one_hot_parser()
set_seed(args.seed)
# Set up environment variables
os.environ["CUDA_LAUNCH_BLOCKING"] = "0"
if args.windows:
os.environ["PL_TORCH_DISTRIBUTED_BACKEND"] = "gloo"
# Set up training configurations
train_cfg_path = args.train_cfg
with open(train_cfg_path, "r", encoding="utf-8") as f:
train_cfg_content = f.read()
train_cfg = loads(train_cfg_content)
train_kwargs = OmegaConf.create(train_cfg)
raw_data_df = get_df(args.csv)
num_classes = len(raw_data_df[train_kwargs.column].unique())
data_df = process_one_hot_df(raw_data_df, train_kwargs.column)
train_kwargs.dims.append(num_classes)
# Construct dataloaders
train_transform, val_transform = get_augs(
colour_jitter=args.colour_jitter, use_benthicnet="img" not in args.name
)
transform = [train_transform, val_transform]
train_dataset, val_dataset, test_dataset = gen_datasets(
data_df,
transform,
args.random_partition,
one_hot=True,
seed=args.seed,
local=args.local,
lab_col=train_kwargs.column,
)
dataloaders = construct_dataloaders(
[train_dataset, val_dataset, test_dataset], train_kwargs
)
train_dataloader = dataloaders[0]
val_dataloader = dataloaders[1]
test_dataloader = dataloaders[2]
# Build model
model = construct_one_hot_model(
train_kwargs,
enc_pth=args.enc_pth,
test_mode=args.test_mode,
fine_tune_mode=args.fine_tune,
)
# Set up callbacks
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
directory_path = os.path.join("../checkpoints", timestamp)
csv_logger = CSVLogger("../logs", name=args.name + "_logs", version=timestamp)
checkpoint_callback = ModelCheckpoint(
dirpath=directory_path,
filename=args.name + "_{epoch:02d}-{val_loss:.4f}",
save_top_k=1,
monitor="val_loss",
mode="min",
every_n_epochs=train_kwargs.max_epochs,
save_weights_only=True,
)
# Determine logging rate
total_steps_per_epoch = len(train_dataloader)
# Number of times to update logs per epoch (needs to be adjusted if sample size is small and batch size is big)
num_log_updates_per_epoch = 4
log_every_n_steps = total_steps_per_epoch // num_log_updates_per_epoch
# Automatically log learning rate
lr_monitor = LearningRateMonitor(logging_interval="epoch")
callbacks = [checkpoint_callback, lr_monitor]
trainer_args = Namespace(**train_kwargs)
torch.set_float32_matmul_precision("medium")
if args.test_mode:
trainer = Trainer(
max_epochs=trainer_args.max_epochs,
logger=csv_logger,
callbacks=callbacks,
accelerator="cuda",
num_nodes=1,
devices=[0],
log_every_n_steps=log_every_n_steps,
enable_progress_bar=False,
)
trainer.test(model, dataloaders=test_dataloader)
else:
trainer = Trainer(
max_epochs=trainer_args.max_epochs,
logger=csv_logger,
callbacks=callbacks,
accelerator="cuda",
num_nodes=args.nodes,
devices=args.gpus,
log_every_n_steps=log_every_n_steps,
enable_progress_bar=False,
)
trainer.fit(model, train_dataloader, val_dataloaders=val_dataloader)
if __name__ == "__main__":
main()