-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_with_ViT.py
66 lines (54 loc) · 3.08 KB
/
predict_with_ViT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import argparse
import os
import re
import time
import torch
import pandas as pd
from trustnet_utils import VideoReader, FaceExtractor, confident_strategy, predict_on_video_set
from training.zoo.classifiers import DeepFakeClassifierWithViT
done_list = []
if __name__=="__main__":
parser = argparse.ArgumentParser("Predict test videos")
arg = parser.add_argument
arg('--weights-dir', type=str, default="weights", help="path to directory with checkpoints")
arg('--models', nargs='+', required=True, help="checkpoint files")
arg('--test-dir', type=str, required=True, help="path to directory with videos")
arg('--output', type=str, required=False, help="path to output csv", default="submission.csv")
arg('--encoder', type=str, required=True, help="encoder", default="resnest269e")
arg('--size', type=int, required=False, help="input size", default=380)
arg('--range1', type=int, required=False, help="list(range($range1, $range2))", default=36)
arg('--range2', type=int, required=False, help="list(range($range1, $range2))", default=50)
args = parser.parse_args()
test_list = list(range(args.range1, args.range2))
for number in test_list:
if number in done_list: continue
test_dir = f"{args.test_dir}dfdc_train_part_{number}" # Input path of test datas
output = f"new_result/{args.models}_{number}.csv"
print(f"Start inference {test_dir}")
models = []
model_paths = [os.path.join(args.weights_dir, model) for model in args.models]
for path in model_paths:
model = DeepFakeClassifierWithViT(encoder=args.encoder).to("cuda")
print("loading state dict {}".format(path))
checkpoint = torch.load(path, map_location="cpu")
state_dict = checkpoint.get("state_dict", checkpoint)
model.load_state_dict({re.sub("^module.", "", k): v for k, v in state_dict.items()}, strict=False)
model.eval()
del checkpoint
models.append(model.half())
frames_per_video = 32
video_reader = VideoReader()
video_read_fn = lambda x: video_reader.read_frames(x, num_frames=frames_per_video)
face_extractor = FaceExtractor(video_read_fn)
input_size = args.size
strategy = confident_strategy
stime = time.time()
test_videos = sorted([x for x in os.listdir(test_dir) if x[-4:] == ".mp4"])
print("Predicting {} videos".format(len(test_videos)))
predictions = predict_on_video_set(face_extractor=face_extractor, input_size=input_size, models=models,
strategy=strategy, frames_per_video=frames_per_video, videos=test_videos,
num_workers=16, test_dir=test_dir)
submission_df = pd.DataFrame({"filename": test_videos, "label": predictions})
submission_df.to_csv(output, index=False)
print("Elapsed:", time.time() - stime)
# python predict_folder.py --models "b7_888_DeepFakeClassifier_resnest269e_0_37" --test-dir "/workspace/dataset/test/" --encoder "resnest269e"