forked from soapy1/mexican-wolves
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpack.py
80 lines (69 loc) · 2.97 KB
/
pack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from wolf import Wolf, generate_random_wolf
from random import normalvariate, randrange
from math import floor
import statistics
class Pack(object):
def __init__(self, wolves):
self.wolves = wolves
def age(self):
for w in self.wolves:
w.age += 1
# Only the alpha male and beta female can mate. The litter size for a
# genetically healthy set of parents is on average 7.45 pups [2] (the
# standard deviation is arbitarily chosen. A genetically depressed set
# of a parents may have a litter size as small as 3.40 - 6.71 on average
def mate(self):
if len(self.wolves) >= 2:
if self.average_genetic_variance() > 1.5:
num_pups = floor(normalvariate(7.45, 2))
else:
num_pups = floor(normalvariate(3.40, 2))
self.wolves.extend(Wolf(self.determine_pup_alleles()) for i in range(0,num_pups))
def determine_pup_alleles(self):
mating_wolves = [w for w in self.wolves if w.can_mate==True]
pup_loci = {}
for k in mating_wolves[0].loci.keys():
pup_loci[k] = (mating_wolves[0].loci[k] if \
randrange(0,2)==0 else mating_wolves[1].loci[k])
return pup_loci
# Accounting for death by old age, lack or resources, killed by
# other animal, etc. This is all encapsulated by the life span of
# the wolf, that is, 6 - 8 years [5]
def deaths(self):
wolves_to_die = []
for w in self.wolves:
if w.age >= w.lifespan:
wolves_to_die.append(w)
for d in wolves_to_die:
self.wolves.remove(d)
def ensure_two_mating_wolves(self):
if len(self.wolves) < 2:
return
mating_wolves = [w for w in self.wolves if w.can_mate == True]
non_mating_wolves = [w for w in self.wolves if w.can_mate==False]
if len(mating_wolves) >= 3:
for i in range(0,len(mating_wolves)-2):
mating_wolves[i].can_mate = False
if len(mating_wolves) == 1:
non_mating_wolves[0].can_mate = True
if len(mating_wolves) == 0:
non_mating_wolves[0].can_mate = True
non_mating_wolves[1].can_mate = True
def average_genetic_variance(self):
allele_variance = self.histogram_of_allele_variance()
return statistics.mean(allele_variance.values())
def histogram_of_allele_variance(self):
allele_vars = self.histogram_of_loci()
for k in allele_vars.keys():
allele_vars[k] = statistics.pvariance(allele_vars[k])
return allele_vars
def histogram_of_loci(self):
loci = {}
num_wolves = len(self.wolves)
for k in ['a','b','c','d','e','f']:
loci[k] = [self.wolves[i].loci[k] for i in range(0,num_wolves)]
return loci
def generate_pack(num_wolves):
wolves = [generate_random_wolf() for i in range(0,num_wolves-2)]
wolves.extend([generate_random_wolf(True) for i in range(0,2)])
return Pack(wolves)