-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMLB_pitchers_data
343 lines (179 loc) · 16.6 KB
/
MLB_pitchers_data
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
#My capstone project I decided to do was to conclude what natural ability between
velocity, spin rate and expected velocity affected a pitcher's ability to strikeout hitters.
I downloaded year by year stats from StatCast and Fangraphs from 2008 to 2018.
#After I downloaded the data sets to my computer I imported them into R
savant_data_2008_pitchers <- read_csv("CapStone Project/savant_data_2008_pitchers.csv")
savant_data_2009_pitchers <- read_csv("CapStone Project/savant_data_2009_pitchers.csv")
savant_data_2010_pitchers <- read_csv("CapStone Project/savant_data_2010_pitchers.csv")
savant_data_2011_pitchers <- read_csv("CapStone Project/savant_data_2011_pitchers.csv")
savant_data_2012_pitchers <- read_csv("CapStone Project/savant_data_2012_pitchers.csv")
savant_data_2013_pitchers <- read_csv("CapStone Project/savant_data_2013_pitchers.csv")
savant_data_2014_pitchers <- read_csv("CapStone Project/savant_data_2014_pitchers.csv")
savant_data_2015_pitchers <- read_csv("CapStone Project/savant_data_2015_pitchers.csv")
savant_data_2016_pitchers <- read_csv("CapStone Project/savant_data_2016_pitchers.csv")
savant_data_2017_pitchers <- read_csv("CapStone Project/savant_data_2017_pitchers.csv")
savant_data_2018_pitchers <- read_csv("CapStone Project/savant_data_2018_pitchers.csv")
FanGraphs_Leaderboard_ <- read_csv("C:/Users/cboat/Downloads/FanGraphs Leaderboard .csv")
FanGraphs_Leaderboard_2008 <- read_csv("CapStone Project/FanGraphs Leaderboard 2008.csv")
FanGraphs_Leaderboard_2009 <- read_csv("CapStone Project/FanGraphs Leaderboard 2009.csv")
FanGraphs_Leaderboard_2010 <- read_csv("CapStone Project/FanGraphs Leaderboard 2010.csv")
FanGraphs_Leaderboard_2011 <- read_csv("CapStone Project/FanGraphs Leaderboard 2011.csv")
FanGraphs_Leaderboard_2012 <- read_csv("CapStone Project/FanGraphs Leaderboar
d 2012.csv")
FanGraphs_Leaderboard_2013 <- read_csv("CapStone Project/FanGraphs Leaderboard 2013.csv")
FanGraphs_Leaderboard_2014 <- read_csv("CapStone Project/FanGraphs Leaderboard 2014.csv")
FanGraphs_Leaderboard_2015 <- read_csv("CapStone Project/FanGraphs Leaderboard 2015.csv")
FanGraphs_Leaderboard_2016 <- read_csv("CapStone Project/FanGraphs Leaderboard 2016.csv")
FanGraphs_Leaderboard_2017 <- read_csv("CapStone Project/FanGraphs Leaderboard 2017.csv")
FanGraphs_Leaderboard_2018 <- read_csv("CapStone Project/FanGraphs Leaderboard 2018.csv")
#After importing I began to merge each data set with the corresponding year together to create one year data frames between the Baseball Savant and Fangraphs imported data sets
baseball_2008 <- merge(savant_data_2008_pitchers, FanGraphs_Leaderboard_2008, by.x = 'player_name', by.y = 'Name')
> View(baseball_2008)
baseball_2009 <- merge(savant_data_2009_pitchers, FanGraphs_Leaderboard_2009, by.x = 'player_name', by.y = 'Name')
> View(baseball_2009)
baseball_2010 <- merge(savant_data_2010_pitchers, FanGraphs_Leaderboard_2010, by.x = 'player_name', by.y = 'Name')
> View(baseball_2010)
baseball_2011 <- merge(savant_data_2011_pitchers, FanGraphs_Leaderboard_2011, by.x = 'player_name', by.y = 'Name')
> View(baseball_2011)
baseball_2012 <- merge(savant_data_2012_pitchers, FanGraphs_Leaderboard_2012, by.x = 'player_name', by.y = 'Name')
> View(baseball_2012)
baseball_2013 <- merge(savant_data_2013_pitchers, FanGraphs_Leaderboard_2013, by.x = 'player_name', by.y = 'Name')
> View(baseball_2013)
baseball_2014 <- merge(savant_data_2014_pitchers, FanGraphs_Leaderboard_2014, by.x = 'player_name', by.y = 'Name')
> View(baseball_2014)
baseball_2015 <- merge(savant_data_2015_pitchers, FanGraphs_Leaderboard_2015, by.x = 'player_name', by.y = 'Name')
> View(baseball_2015)
baseball_2016 <- merge(savant_data_2016_pitchers, FanGraphs_Leaderboard_2016, by.x = 'player_name', by.y = 'Name')
> View(baseball_2016)
baseball_2017 <- merge(savant_data_2017_pitchers, FanGraphs_Leaderboard_2017, by.x = 'player_name', by.y = 'Name')
> View(baseball_2017)
baseball_2018 <- merge(savant_data_2018_pitchers, FanGraphs_Leaderboard_2018, by.x = 'player_name', by.y = 'Name')
> View(baseball_2018)
#I then merged the years based off the MLB data collection programs. 2008-2014 were collected by PitchFx; 2015-2018 by Statcast
Pitchers_Baseball_Savant <- rbind(baseball_2018, baseball_2017, baseball_2016, baseball_2015)
Pitchers_PitchFX <- rbind(baseball_2008, baseball_2009, baseball_2010, baseball_2011, baseball_2012, baseball_2013, baseball_2014)
#I changed the names on the columns in each data frame above to better suit R coding to call on each respective column
colnames(Pitchers_Baseball_Savant)[colnames(Pitchers_Baseball_Savant)=="K/9"] <- "Strikeout_rate"
colnames(Pitchers_Baseball_Savant)[colnames(Pitchers_Baseball_Savant)=="BB/9"] <- "Walk_rate"
colnames(Pitchers_Baseball_Savant)[colnames(Pitchers_Baseball_Savant)=="LOB%"] <- "Left_On_Base"
colnames(Pitchers_Baseball_Savant)[colnames(Pitchers_Baseball_Savant)=="HR/9"] <- "Homerun_Rate"
colnames(Pitchers_Baseball_Savant)[colnames(Pitchers_Baseball_Savant)=="GB%"] <- "Groundball_Rate"
colnames(Pitchers_Baseball_Savant)[colnames(Pitchers_Baseball_Savant)=="HR/FB"] <- "Homerun_To_Flyball"
colnames(Pitchers_PitchFX)[colnames(Pitchers_PitchFX)=="K/9"] <- "Strikeout_rate"
colnames(Pitchers_PitchFX)[colnames(Pitchers_PitchFX)=="BB/9"] <- "Walk_rate"
colnames(Pitchers_PitchFX)[colnames(Pitchers_PitchFX)=="LOB%"] <- "Left_On_Base"
colnames(Pitchers_PitchFX)[colnames(Pitchers_PitchFX)=="HR/9"] <- "Homerun_Rate"
colnames(Pitchers_PitchFX)[colnames(Pitchers_PitchFX)=="GB%"] <- "Groundball_Rate"
colnames(Pitchers_PitchFX)[colnames(Pitchers_PitchFX)=="HR/FB"] <- "Homerun_To_Flyball"
#I then removed insignificant and duplicate rows from each data frame
Pitchers_Baseball_Savant_new <- subset(Pitchers_Baseball_Savant, select = -c(player_name, Team, babip, playerid))
Pitchers_PitchFX_new <- subset(Pitchers_PitchFX, select = -c(player_name, Team, babip, playerid))
#The following is done to change columns to "Numeric" factors in order to run correlations and regressions. Previously they were "Character"
Pitchers_PitchFX_new$ba <- as.numeric(Pitchers_PitchFX_new$ba)
Pitchers_PitchFX_new$iso <- as.numeric(Pitchers_PitchFX_new$iso)
Pitchers_PitchFX_new$slg <- as.numeric(Pitchers_PitchFX_new$slg)
Pitchers_PitchFX_new$woba <- as.numeric(Pitchers_PitchFX_new$woba)
Pitchers_PitchFX_new$xwoba <- as.numeric(Pitchers_PitchFX_new$xwoba)
Pitchers_PitchFX_new$xba <- as.numeric(Pitchers_PitchFX_new$xba)
Pitchers_PitchFX_new$hits <- as.numeric(Pitchers_PitchFX_new$hits)
Pitchers_PitchFX_new$abs <- as.numeric(Pitchers_PitchFX_new$abs)
Pitchers_PitchFX_new$launch_speed <- as.numeric(Pitchers_PitchFX_new$launch_speed)
Pitchers_PitchFX_new$launch_angle <- as.numeric(Pitchers_PitchFX_new$launch_angle)
Pitchers_PitchFX_new$spin_rate <- as.numeric(Pitchers_PitchFX_new$spin_rate)
Pitchers_PitchFX_new$effective_speed <- as.numeric(Pitchers_PitchFX_new$effective_speed)
Pitchers_PitchFX_new$eff_min_vel <- as.numeric(Pitchers_PitchFX_new$eff_min_vel)
Pitchers_PitchFX_new$release_extension <- as.numeric(Pitchers_PitchFX_new$release_extension)
Pitchers_PitchFX_new$pos3_int_start_distance <- as.numeric(Pitchers_PitchFX_new$pos3_int_start_distance)
Pitchers_PitchFX_new$pos4_int_start_distance <- as.numeric(Pitchers_PitchFX_new$pos4_int_start_distance)
Pitchers_PitchFX_new$pos5_int_start_distance <- as.numeric(Pitchers_PitchFX_new$pos5_int_start_distance)
Pitchers_PitchFX_new$pos6_int_start_distance <- as.numeric(Pitchers_PitchFX_new$pos6_int_start_distance)
Pitchers_PitchFX_new$pos7_int_start_distance <- as.numeric(Pitchers_PitchFX_new$pos7_int_start_distance)
Pitchers_PitchFX_new$pos8_int_start_distance <- as.numeric(Pitchers_PitchFX_new$pos8_int_start_distance)
Pitchers_PitchFX_new$pos9_int_start_distance <- as.numeric(Pitchers_PitchFX_new$pos9_int_start_distance)
Pitchers_Baseball_Savant_new_1$ba <- as.numeric(Pitchers_Baseball_Savant_new_1$ba)
Pitchers_Baseball_Savant_new_1$iso <- as.numeric(Pitchers_Baseball_Savant_new_1$iso)
Pitchers_Baseball_Savant_new_1$slg <- as.numeric(Pitchers_Baseball_Savant_new_1$slg)
Pitchers_Baseball_Savant_new_1$woba <- as.numeric(Pitchers_Baseball_Savant_new_1$woba)
Pitchers_Baseball_Savant_new_1$xwoba <- as.numeric(Pitchers_Baseball_Savant_new_1$xwoba)
Pitchers_Baseball_Savant_new_1$xba <- as.numeric(Pitchers_Baseball_Savant_new_1$xba)
Pitchers_Baseball_Savant_new_1$hits <- as.numeric(Pitchers_Baseball_Savant_new_1$hits)
Pitchers_Baseball_Savant_new_1$abs <- as.numeric(Pitchers_Baseball_Savant_new_1$abs)
Pitchers_Baseball_Savant_new_1$launch_speed <- as.numeric(Pitchers_Baseball_Savant_new_1$launch_speed)
Pitchers_Baseball_Savant_new_1$launch_angle <- as.numeric(Pitchers_Baseball_Savant_new_1$launch_angle)
Pitchers_Baseball_Savant_new_1$spin_rate <- as.numeric(Pitchers_Baseball_Savant_new_1$spin_rate)
Pitchers_Baseball_Savant_new_1$effective_speed <- as.numeric(Pitchers_Baseball_Savant_new_1$effective_speed)
Pitchers_Baseball_Savant_new_1$eff_min_vel <- as.numeric(Pitchers_Baseball_Savant_new_1$eff_min_vel)
Pitchers_Baseball_Savant_new_1$release_extension <- as.numeric(Pitchers_Baseball_Savant_new_1$release_extension)
Pitchers_Baseball_Savant_new_1$pos3_int_start_distance <- as.numeric(Pitchers_Baseball_Savant_new_1$pos3_int_start_distance)
Pitchers_Baseball_Savant_new_1$pos4_int_start_distance <- as.numeric(Pitchers_Baseball_Savant_new_1$pos4_int_start_distance)
Pitchers_Baseball_Savant_new_1$pos5_int_start_distance <- as.numeric(Pitchers_Baseball_Savant_new_1$pos5_int_start_distance)
Pitchers_Baseball_Savant_new_1$pos6_int_start_distance <- as.numeric(Pitchers_Baseball_Savant_new_1$pos6_int_start_distance)
Pitchers_Baseball_Savant_new_1$pos7_int_start_distance <- as.numeric(Pitchers_Baseball_Savant_new_1$pos7_int_start_distance)
Pitchers_Baseball_Savant_new_1$pos8_int_start_distance <- as.numeric(Pitchers_Baseball_Savant_new_1$pos8_int_start_distance)
Pitchers_Baseball_Savant_new_1$pos9_int_start_distance <- as.numeric(Pitchers_Baseball_Savant_new_1$pos9_int_start_distance)
#I realized that if I used the above code to change to numeric I would lose the entire data column because of the "%". So I removed the "% in the following columns to keep the numeric data
Pitchers_PitchFX_new$Left_On_Base <- as.numeric(sub("%", "",Pitchers_PitchFX_new$Left_On_Base))
Pitchers_PitchFX_new$Groundball_Rate <- as.numeric(sub("%", "",Pitchers_PitchFX_new$Groundball_Rate))
Pitchers_PitchFX_new$Homerun_To_Flyball <- as.numeric(sub("%", "",Pitchers_PitchFX_new$Homerun_To_Flyball))
Pitchers_Baseball_Savant_new_1$Left_On_Base <- as.numeric(sub("%", "", Pitchers_Baseball_Savant_new_1$Left_On_Base))
Pitchers_Baseball_Savant_new_1$Groundball_Rate <- as.numeric(sub("%", "", Pitchers_Baseball_Savant_new_1$Groundball_Rate))
Pitchers_Baseball_Savant_new_1$Homerun_To_Flyball <- as.numeric(sub("%", "", Pitchers_Baseball_Savant_new_1$Homerun_To_Flyball))
#After reviewing the data frames I began to see that there were outliers within the data set that could skew the results so I decided to remove all pitchers that did not throw at least 80 innings
Pitchers_PitchFX_new_1 <- subset(Pitchers_PitchFX_new, pitch_percent > 80.0)
Pitchers_Baseball_Savant_new_1 <- subset(Pitchers_Baseball_Savant_new, pitch_percent > 80.0)
#Removing the NA observations and rows from data frames was key to allowing me to run correlations and regressions
Pitchers_Baseball_Savant_new_2 <- na.omit(Pitchers_Baseball_Savant_new_1)
Pitchers_PitchFX_new_2 <- subset(Pitchers_PitchFX_new_1, select = -c(xwoba, xba, launch_speed, launch_angle, spin_rate, effective_speed, eff_min_vel, release_extension, pos3_int_start_distance, pos4_int_start_distance, pos5_int_start_distance, pos6_int_start_distance, pos7_int_start_distance, pos8_int_start_distance, pos9_int_start_distance))
Pitchers_PitchFX_new_3 <- na.omit(Pitchers_PitchFX_new_2)
# The following makes new columns within the data set to view the variations from the mean each statistic has
Pitchers_Baseball_Savant_new_2$Velo_Mean_Diff <- Pitchers_Baseball_Savant_new_2$velocity - mean(Pitchers_Baseball_Savant_new_2$velocity)
Pitchers_Baseball_Savant_new_2$Spin_Rate_Mean_Diff <- Pitchers_Baseball_Savant_new_2$spin_rate - mean(Pitchers_Baseball_Savant_new_2$spin_rate)
Pitchers_Baseball_Savant_new_2$effective_speed_diff <- Pitchers_Baseball_Savant_new_2$effective_speed - mean(Pitchers_Baseball_Savant_new_2$effective_speed)
Pitchers_PitchFX_new_3$Velo_Mean_Diff <- Pitchers_PitchFX_new_3$velocity - mean(Pitchers_PitchFX_new_3$velocity)
# The following code creates a new column to depict groupings in each respective statistic that groups based off of above, average or below average based off the mean
Pitchers_Baseball_Savant_new_2$velocity_groupings[Pitchers_Baseball_Savant_new_2$velocity >= 90.91] <- "High"
Pitchers_Baseball_Savant_new_2$velocity_groupings[Pitchers_Baseball_Savant_new_2$velocity < 90.91 & Pitchers_Baseball_Savant_new_2$velocity > 86.79] <- "Average"
Pitchers_Baseball_Savant_new_2$velocity_groupings[Pitchers_Baseball_Savant_new_2$velocity < 86.80] <- "Below"
Pitchers_Baseball_Savant_new_2$spin_rate_groupings[Pitchers_Baseball_Savant_new_2$spin_rate > 2308] <- "High"
Pitchers_Baseball_Savant_new_2$spin_rate_groupings[Pitchers_Baseball_Savant_new_2$spin_rate < 2309 & Pitchers_Baseball_Savant_new_2$spin_rate > 2066] <- "Average"
Pitchers_Baseball_Savant_new_2$spin_rate_groupings[Pitchers_Baseball_Savant_new_2$spin_rate < 2067] <- "Below"
Pitchers_Baseball_Savant_new_2$effective_speed_groupings[Pitchers_Baseball_Savant_new_2$effective_speed > 90.47] <- "High"
Pitchers_Baseball_Savant_new_2$effective_speed_groupings[Pitchers_Baseball_Savant_new_2$effective_speed < 90.48 & Pitchers_Baseball_Savant_new_2$effective_speed > 86.11] <- "Average"
Pitchers_Baseball_Savant_new_2$effective_speed_groupings[Pitchers_Baseball_Savant_new_2$effective_speed < 86.12] <- "Below"
Pitchers_Baseball_Savant_new_2$Strikeout_rate_groupings[Pitchers_Baseball_Savant_new_2$Strikeout_rate > 9.510] <- "High"
Pitchers_Baseball_Savant_new_2$Strikeout_rate_groupings[Pitchers_Baseball_Savant_new_2$Strikeout_rate < 9.510 & Pitchers_Baseball_Savant_new_2$Strikeout_rate > 6.429] <- "Average"
Pitchers_Baseball_Savant_new_2$Strikeout_rate_groupings[Pitchers_Baseball_Savant_new_2$Strikeout_rate < 6.430] <- "Below"
Pitchers_PitchFX_new_3$Strikeout_rate_groupings[Pitchers_PitchFX_new_3$Strikeout_rate > 8.79] <- "High"
Pitchers_PitchFX_new_3$Strikeout_rate_groupings[Pitchers_PitchFX_new_3$Strikeout_rate < 8.80 & Pitchers_PitchFX_new_3$Strikeout_rate > 5.78] <- "Average"
Pitchers_PitchFX_new_3$Strikeout_rate_groupings[Pitchers_PitchFX_new_3$Strikeout_rate < 5.79] <- "Below"
#Then changed the created columns to factors from character strings
Pitchers_Baseball_Savant_new_2$velocity_groupings <- as.factor(Pitchers_Baseball_Savant_new_2$velocity_groupings)
Pitchers_Baseball_Savant_new_2$spin_rate_groupings <- as.factor(Pitchers_Baseball_Savant_new_2$spin_rate_groupings)
Pitchers_Baseball_Savant_new_2$effective_speed_groupings <- as.factor(Pitchers_Baseball_Savant_new_2$effective_speed_groupings)
#Then subset the data based off the follwoing conditions to remove the extreme outliers
Pitchers_Baseball_Savant_new_3 <- subset(Pitchers_Baseball_Savant_new_2, Strikeout_rate < 26.99)
Pitchers_Baseball_Savant_new_3 <- subset(Pitchers_Baseball_Savant_new_2, Strikeout_rate > 0.01)
Pitchers_PitchFX_new_3 <- subset(Pitchers_PitchFX_new_3, Pitchers_PitchFX_new_3$Strikeout_rate > 0.01 & Pitchers_PitchFX_new_3$Strikeout_rate < 26.99)
#Created the Training and Test data set
set.seed(1000)
Baseball_Savant_train <- round(nrow(Pitchers_Baseball_Savant_new_3) *0.80)
Baseball_Savant_train
[1] 1884
train <- sample(1:nrow(Pitchers_Baseball_Savant_new_3), Baseball_Savant_train, replace = FALSE)
trainBS <- Pitchers_Baseball_Savant_new_3[train,]
testBS <- Pitchers_Baseball_Savant_new_3[-train,]
#Created decision trees on both the Training and Test data sets
Strikeout_classification_train <- rpart(Strikeout_rate_groupings ~ velocity + spin_rate + effective_speed, data = trainBS, method = "class")
rpart.plot(Strikeout_classification_train)
Strikeout_classification_test <- rpart(Strikeout_rate_groupings ~ velocity + spin_rate + effective_speed, data = testBS, method = "class")
rpart.plot(Strikeout_classification_train_test)
#Created a model to test the training data sets
model <- train(Strikeout_rate ~ velocity + spin_rate + effective_speed, data = trainBS)
#Predicted the test data set based off the model (training)
predict(model, testBS)
#Ran function to predict the test data sets strikeout rates successfully
Strikeouts_predicted <- predict(model, testBS)
#Created boxplots from the specific data columns
boxplot(Pitchers_PitchFX_new_3$velocity)
boxplot(Pitchers_Baseball_Savant_new_3$velocity)
boxplot(Pitchers_Baseball_savant_new_3$spin_rate)