forked from rdguez-mariano/fast_imas_IPOL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhomography.cfg
119 lines (85 loc) · 3.09 KB
/
homography.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
// example configuration file for fundamental matrix estimation
// ========================================================================================
// common RANSAC parameters
common =
{
// ransac_conf: 0.0 - 1.0 (must be float)
// specifies the confidence parameter
ransac_conf = 0.99;
// min_sample_size: int
// number of points used to generate models
min_sample_size = 4;
// inlier_threshold: float
// threshold for inlier classification
inlier_threshold = 2.0;
// max_hypotheses: int
// maximum number of samples to be drawn before aborting
max_hypotheses = 850000;
// max_solutions_per_sample: int
// number of possible solutions using the minimal sample
max_solutions_per_sample = 1;
// prevalidate_sample: true, false
// specifies whether samples are to be prevalidated prior to model generation
prevalidate_sample = true;
// prevalidate_model: true, false
// specifies whether models are to be prevalidated prior to verification against data points
prevalidate_model = true;
// degen_check: true, false
// specifies whether degeneracy testing is to be performed
degen_check = true;
// random_sampling_method: UNIFORM, PROSAC (string)
// specifies the type of random sampling to be used to generate hypotheses
//random_sampling_method = "PROSAC";
random_sampling_method = "UNIFORM";
// verif_method: STANDARD, SPRT (string)
// specifies the type of model verification to be performed
verif_method = "SPRT";
// local_opt: NO_LO, LOSAC (string)
// specifies what type of local optimization is to be performed
local_opt = "LOSAC";
};
// ========================================================================================
// PROSAC parameters
prosac =
{
// max_prosac_samples: int
// number of samples after which PROSAC behaves like RANSAC
max_prosac_samples = 500000;
// beta: float
// probability of incorrect model being support by a random data point
// can be adapted to use values from sprt
beta = 0.09;
// min_stopping_length: int
min_stopping_length = 20;
// non_rand_conf: float
// find non-minimal subset with probability of randomness smaller than (1-non_rand_conf)
non_rand_conf = 0.99;
// sorted_points_path: string
// path to file containing indices of points sorted by quality scores
sorted_points_path = "./sorting.txt";
};
// ========================================================================================
// SPRT parameters
sprt =
{
time_model = 100.0;
models_per_sample = 1.0;
delta = 0.01;
epsilon = 0.2;
};
// ========================================================================================
// Local optimization parameters
losac =
{
inner_sample_size = 12;
inner_ransac_repetitions = 3;
threshold_multiplier = 2.0;
num_steps = 4;
};
// ========================================================================================
// Problem specific parameters
problem_specific =
{
// path to file containing the (normalized) input points
input_file_path = "./orig_pts.txt";
};