forked from sundw2014/NeuReach
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuReach_onestep_rect.py
556 lines (474 loc) · 20 KB
/
NeuReach_onestep_rect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import os
import torch
import torch.nn.functional as F
import numpy as np
import time
import importlib
import copy
# from tensorboardX import SummaryWriter
import matplotlib.pyplot as plt
from verse.analysis.NeuReach.utils import AverageMeter
from verse.analysis.NeuReach.data import get_dataloader
from verse.analysis.NeuReach.model import get_model_rect
import sys
sys.path.append('systems')
import argparse
SMALL_SIZE = 8
MEDIUM_SIZE = 10
BIGGER_SIZE = 13
HUGE_SIZE = 25
default_params = {
"seed": 0,
"N_X0": 5,
"N_x0": 100,
"N_t": 100,
"data_file_train": 'train.pklz',
"batch_size": 256,
"num_test": 10,
"data_file_eval": 'eval.pklz',
"use_cuda": False,
"layer1": 64,
"layer2": 64,
"epochs": 10,
"learning_rate": 0.05,
"lr_step": 10,
"alpha": 0.0001,
"_lambda": 0.03,
"r": 0.1,
}
def adjust_learning_rate(optimizer, epoch, learning_rate, lr_step):
"""Sets the learning rate to the initial LR decayed by 10 every * epochs"""
lr = learning_rate * (0.1 ** (epoch // lr_step))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def save_checkpoint(state, log, filename='checkpoint.pth.tar'):
filename = log + '/' + filename
torch.save(state, filename)
def hinge_loss_function(LHS, RHS, alpha):
res = LHS - RHS + alpha
res[res<0] = 0
res = res.sum(dim=1)
return res
global_step = 0
def trainval(
epoch, dataloader, writer, training, model, optimizer, forward,
use_cuda, alpha, _lambda
):
global global_step
loss = AverageMeter()
hinge_loss = AverageMeter()
volume_loss = AverageMeter()
l2_loss = AverageMeter()
error_2 = AverageMeter()
prec = AverageMeter()
result = [[],[],[],[],[]] # for plotting
if training:
model.train()
else:
model.eval()
end = time.time()
for step, (X0, t, ref, xt) in enumerate(dataloader):
batch_size = X0.size(0)
time_str = 'data time: %.3f s\t'%(time.time()-end)
end = time.time()
if use_cuda:
X0 = X0.cuda()
t = t.cuda()
ref = ref.cuda()
xt = xt.cuda()
TransformMatrix = forward(torch.cat([X0,t], dim=1))
time_str += 'forward time: %.3f s\t'%(time.time()-end)
end = time.time()
DXi = xt - ref
# LHS = ((torch.matmul(TransformMatrix, DXi.view(batch_size,-1,1)).view(batch_size,-1)) ** 2).sum(dim=1)
# RHS = torch.ones(LHS.size()).type(DXi.type())
LHS = torch.abs(DXi)
RHS = torch.abs(TransformMatrix)
# _hinge_loss = hinge_loss_function(LHS, RHS, args)
# _volume_loss = -torch.log((TransformMatrix + 0.01 * torch.eye(TransformMatrix.shape[-1]).unsqueeze(0).type(X0.type())).det().abs())
_hinge_loss = hinge_loss_function(LHS, RHS, alpha)
_volume_loss = torch.prod(torch.abs(TransformMatrix),1)
# mask = _hinge_loss > 0
# _volume_loss[mask] = 0.0
_hinge_loss = _hinge_loss.mean()
_volume_loss = _volume_loss.mean()
# CY2 = torch.sqrt(LHS)
# Y2 = torch.sqrt((DXi.view(batch_size,-1) ** 2).sum(dim=1))
# _l2_loss = (torch.abs((CY2 - 1)) * Y2 / CY2).mean()
_loss = _hinge_loss + _lambda * _volume_loss
_loss *= 10
loss.update(_loss.item(), batch_size)
prec.update((LHS.detach().cpu().numpy() <= (RHS.detach().cpu().numpy())).sum() / batch_size, batch_size)
hinge_loss.update(_hinge_loss.item(), batch_size)
volume_loss.update(_volume_loss.item(), batch_size)
# l2_loss.update(_l2_loss.item(), batch_size)
# if writer is not None and training:
# writer.add_scalar('loss', loss.val, global_step)
# writer.add_scalar('prec', prec.val, global_step)
# writer.add_scalar('Volume_loss', volume_loss.val, global_step)
# writer.add_scalar('Hinge_loss', hinge_loss.val, global_step)
# writer.add_scalar('L2_loss', l2_loss.val, global_step)
time_str += 'other time: %.3f s\t'%(time.time()-end)
c = time.time()
if training:
global_step += 1
optimizer.zero_grad()
_loss.backward()
optimizer.step()
time_str += 'backward time: %.3f s'%(time.time()-c)
end = time.time()
# print('Loss: %.3f, PREC: %.3f, HINGE_LOSS: %.3f, VOLUME_LOSS: %.3f, L2_loss: %.3f'%(loss.avg, prec.avg, hinge_loss.avg, volume_loss.avg, l2_loss.avg))
# if writer is not None and not training:
# writer.add_scalar('loss', loss.avg, global_step)
# writer.add_scalar('prec', prec.avg, global_step)
# writer.add_scalar('Volume_loss', volume_loss.avg, global_step)
# writer.add_scalar('Hinge_loss', hinge_loss.avg, global_step)
# writer.add_scalar('L2_loss', l2_loss.avg, global_step)
return result, loss.avg, prec.avg
def NeuReach_rect(
config,
seed = 0,
N_X0 = 5, N_x0 = 100, N_t = 100, data_file_train = 'train.pklz', batch_size = 256,
num_test = 10, data_file_eval = 'eval.pklz',
use_cuda = False,
layer1 = 64, layer2 = 64,
epochs = 10,
learning_rate = 0.05, lr_step = 10,
alpha = 0.0001, _lambda = 0.03,
):
np.random.seed(seed)
torch.manual_seed(seed)
# os.system('mkdir '+log)
# os.system('echo "%s" > %s/cmd.txt'%(' '.join(sys.argv), log))
# os.system('cp *.py '+log)
# os.system('cp -r systems/ '+log)
# os.system('cp -r ODEs/ '+log)
# config = importlib.import_module('system_'+args.system)
model, forward = get_model_rect(len(config.sample_X0())+1, config.simulate(config.get_init_center(config.sample_X0())).shape[1]-1, config, layer1, layer2)
if use_cuda:
model = model.cuda()
else:
model = model.cpu()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
train_loader, val_loader = get_dataloader(
config, N_X0, N_x0, N_t, data_file_train, batch_size,
num_test, data_file_eval
)
# train_writer = SummaryWriter(log+'/train')
# val_writer = SummaryWriter(log+'/val')
best_loss = np.inf
best_prec = 0
res = model.state_dict()
for epoch in range(epochs):
adjust_learning_rate(optimizer, epoch, learning_rate, lr_step)
# train for one epoch
# print('Epoch %d'%(epoch))
_, _, _ = trainval(epoch, train_loader, writer=None, training=True, model=model, optimizer=optimizer, forward=forward, alpha=alpha, _lambda=_lambda, use_cuda = use_cuda)
result_train, _, _ = trainval(epoch, train_loader, writer=None, training=False, model=model, optimizer=optimizer, forward=forward, alpha=alpha, _lambda=_lambda, use_cuda = use_cuda)
result_val, loss, prec = trainval(epoch, val_loader, writer=None, training=False, model=model, optimizer=optimizer, forward=forward, alpha=alpha, _lambda=_lambda, use_cuda = use_cuda)
epoch += 1
# if prec > best_prec:
if loss < best_loss:
best_loss = loss
# best_prec = prec
# save_checkpoint({'epoch': epoch + 1, 'state_dict': model.state_dict()}, log)
res = model.state_dict()
return res
class SysConfig:
def __init__(self, init, mode, time_bound, time_step, sim_func, r, track_map = None):
self.init = init
self.TMAX = time_bound
self.dt = time_step
self.sim_func = sim_func
self.mode = mode
self.r = r
self.track_map = track_map
def sample_X0(self):
X0 = []
for i in range(0,len(self.init[0])):
X0.append(self.init[0][i])
X0.append(self.init[1][i])
# X0.append(self.r)
return np.array(X0)
def sample_t(self):
return (np.random.randint(int(self.TMAX/self.dt))+1) * self.dt
def sample_x0(self, X0):
x0 = []
for i in range(0,X0.shape[0]-1,2):
low = X0[i]
high = X0[i+1]
val = np.random.uniform(low-self.r, high+self.r)
x0.append(val)
return np.array(x0)
def simulate(self, x0):
if isinstance(x0,np.ndarray):
x0 = x0.tolist()
return self.sim_func(self.mode, x0, self.TMAX, self.dt, self.track_map)
def get_init_center(self, X0):
center = []
for i in range(0,X0.shape[0]-1,2):
low = X0[i]
high = X0[i+1]
center.append((low+high)/2)
return np.array(center)
def get_X0_normalization_factor(self):
mean = np.zeros(self.sample_X0().shape)
std = np.ones(self.sample_X0().shape)
return [mean, std]
def calculate_bloated_tube_NeuReach(
mode, init, time_bound, time_step, sim_func, track_map = None, params = {}
):
print(init)
tmp = copy.deepcopy(default_params)
tmp.update(params)
seed = tmp["seed"]
N_X0 = tmp["N_X0"]
N_x0 = tmp["N_x0"]
N_t = tmp["N_t"]
data_file_train = tmp["data_file_train"]
batch_size = tmp["batch_size"]
num_test = tmp["num_test"]
data_file_eval = tmp["data_file_eval"]
use_cuda = tmp["use_cuda"]
layer1 = tmp["layer1"]
layer2 = tmp["layer2"]
epochs = tmp["epochs"]
learning_rate = tmp["learning_rate"]
lr_step = tmp["lr_step"]
alpha = tmp["alpha"]
_lambda = tmp["_lambda"]
r = tmp["r"]
config = SysConfig(init, mode, time_bound, time_step, sim_func, r, track_map)
best_state_dict = NeuReach_rect(
config,
seed = seed,
N_X0 = N_X0, N_x0 = N_x0, N_t = N_t, data_file_train = data_file_train, batch_size = batch_size,
num_test = num_test, data_file_eval = data_file_eval,
use_cuda = use_cuda,
layer1 = layer1, layer2 = layer2,
epochs = epochs,
learning_rate = learning_rate, lr_step = lr_step,
alpha = alpha, _lambda = _lambda
)
model_ours, forward_ours = get_model_rect(len(config.sample_X0())+1, config.simulate(config.get_init_center(config.sample_X0())).shape[1]-1, config, layer1, layer2)
model_ours.load_state_dict(best_state_dict)
X0 = config.sample_X0()
center = config.get_init_center(X0)
ref = config.simulate(center)
num_t = ref.shape[0]
res = []
for i in range(num_t):
tmp = torch.tensor(X0.tolist()+[ref[i,0]]).view(1,-1).float()
P = forward_ours(tmp)
P = P.squeeze(0)
res.append(P.cpu().detach().numpy())
reachtube = []
for i in range(num_t - 1) :
tmp_center = np.vstack((ref[i,1:],ref[i,1:], ref[i+1,1:],ref[i+1,1:]))
tmp_radius = np.vstack((res[i],-res[i],res[i+1],-res[i+1]))
lower_bound = np.insert(np.min(tmp_center+tmp_radius,axis=0),0,ref[i,0]).tolist()
upper_bound = np.insert(np.max(tmp_center+tmp_radius,axis=0),0,ref[i+1,0]).tolist()
reachtube.append(lower_bound)
reachtube.append(upper_bound)
return np.array(reachtube)
if __name__ == "__main__":
partition = ((-0.7, 0.10471975511965977), (-0.5, 0.17453292519943295))
# partition = ((-0.9, -0.17453292519943295), (-0.7, -0.10471975511965977))
parser = argparse.ArgumentParser(description="")
parser.add_argument('--system', type=str,
default='jetengine', help='Name of the dynamical system.')
parser.add_argument('--lambda', dest='_lambda', type=float, default=0.03, help='lambda for balancing the two loss terms.')
parser.add_argument('--alpha', dest='alpha', type=float, default=0.0001, help='Hyper-parameter in the hinge loss.')
parser.add_argument('--N_X0', type=int, default=5, help='Number of samples for the initial set X0.')
parser.add_argument('--N_x0', type=int, default=100, help='Number of samples for the initial state x0.')
parser.add_argument('--N_t', type=int, default=100, help='Number of samples for the time instant t.')
parser.add_argument('--layer1', type=int, default=64, help='Number of neurons in the first layer of the NN.')
parser.add_argument('--layer2', type=int, default=64, help='Number of neurons in the second layer of the NN.')
parser.add_argument('--epochs', type=int, default=10, help='Number of epochs for training.')
parser.add_argument('--lr', dest='learning_rate', type=float, default=0.05, help='Learning rate.')
parser.add_argument('--data_file_train', default='train.pklz', type=str, help='Path to the file for storing the generated training data set.')
parser.add_argument('--data_file_eval', default='eval.pklz', type=str, help='Path to the file for storing the generated evaluation data set.')
parser.add_argument('--log', type=str, default='', help='Path to the directory for storing the logging files.')
parser.add_argument('--no_cuda', dest='use_cuda', action='store_false', help='Use this option to disable cuda, if you want to train the NN on CPU.')
parser.set_defaults(use_cuda=True)
parser.add_argument('--bs', dest='batch_size', type=int, default=256)
parser.add_argument('--num_test', type=int, default=10)
parser.add_argument('--lr_step', type=int, default=10)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--x_lower', type=float)
parser.add_argument('--x_upper', type=float)
parser.add_argument('--y_lower', type=float)
parser.add_argument('--y_upper', type=float)
parser.add_argument('--theta_lower', type=float)
parser.add_argument('--theta_upper', type=float)
parser.add_argument('--TMAX', type=float)
parser.add_argument('--dt', type=float)
args = parser.parse_args()
args.log = "log_lanetracking"
args.data_file_train = "lanetracking_train.pklz"
args.data_file_eval = "lanetracking_eval.pklz"
args.x_lower = 0
args.x_upper = 0
# args.y_lower = -0.7
# args.y_upper = -0.5
args.y_lower = partition[0][0]
args.y_upper = partition[1][0]
# args.theta_lower = 0.10471975511965977
# args.theta_upper = 0.17453292519943295
args.theta_lower = partition[0][1]
args.theta_upper = partition[1][1]
args.r = 0.19897
args.TMAX = 0.5
args.dt = 0.1
args.use_cuda = False
NeuReach_rect(args)
plt.rc('font', size=BIGGER_SIZE) # controls default text sizes
plt.rc('axes', titlesize=HUGE_SIZE) # fontsize of the axes title
plt.rc('axes', labelsize=15) # fontsize of the x and y labels
plt.rc('xtick', labelsize=15) # fontsize of the tick labels
plt.rc('ytick', labelsize=15) # fontsize of the tick labels
plt.rc('legend', fontsize=10) # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title
plt.rc('axes', axisbelow=True)
plt.subplots_adjust(
top=0.92,
bottom=0.15,
left=0.11,
right=1.0,
hspace=0.2,
wspace=0.2)
import sys
sys.path.append('systems')
sys.path.append('.')
from model import get_model_rect
from model_dryvr import get_model as get_model_dryvr
import argparse
np.random.seed(1024)
parser = argparse.ArgumentParser(description="")
parser.add_argument('--system', type=str,
default='lanetracking')
parser.add_argument('--no_cuda', dest='use_cuda', action='store_false')
parser.set_defaults(use_cuda=True)
parser.add_argument('--layer1', type=int, default=64)
parser.add_argument('--layer2', type=int, default=64)
parser.add_argument('--pretrained_ours', type=str)
parser.add_argument('--pretrained_dryvr', type=str)
args = parser.parse_args()
args.use_cuda = False
args.pretrained_ours = 'log_lanetracking/checkpoint.pth.tar'
args.system = 'lane_tracking_new'
config = LaneTrackingSystem(
partition[0][0],
partition[1][0],
partition[0][1],
partition[1][1],
0.19
)
model_ours, forward_ours = get_model_rect(len(config.sample_X0())+1, config.simulate(config.get_init_center(config.sample_X0())).shape[1]-1, config, args)
if args.use_cuda:
model_ours = model_ours.cuda()
else:
model_ours = model_ours.cpu()
model_ours.load_state_dict(torch.load(args.pretrained_ours)['state_dict'])
# model_dryvr, forward_dryvr = get_model_dryvr(len(config.sample_X0())+1, config.simulate(config.get_init_center(config.sample_X0())).shape[1]-1)
# model_dryvr.load_state_dict(torch.load(args.pretrained_dryvr)['state_dict'])
def ellipsoid_surface_2D(P):
K = 100
thetas = np.linspace(0, 2 * np.pi, K)
points = []
for i, theta in enumerate(thetas):
point = np.array([np.cos(theta), np.sin(theta)])
points.append(point)
points = np.array(points)
points = np.linalg.inv(P).dot(points.T)
return points[0,:], points[1,:]
def rectangular_surface_2D(P):
x = [-P[0],P[0],P[0],-P[0],-P[0]]
y = [-P[1],-P[1],P[1],P[1],-P[1]]
return x,y
benchmark_name = args.system
# for l in range(6):
# for m in range(3):
# l,m = 0,0
# center = np.array([0,-0.75+l*0.3,(-6+m*6)*np.pi/180,-0.75+l*0.3,(-6+m*6)*np.pi/180])
# r = ((np.eye(5)+np.array([
# [0,0,0,0,0],
# [0,0,0,0,0],
# [0,0,0,0,0],
# [0,0,0,3,0],
# [0,0,0,0,3]
# ]))*(0.05**2)).flatten()
# print(center, r)
X0 = config.sample_X0()
center = config.get_init_center(X0)
traces = []
# ref trace
ref = config.simulate(center)
traces.append(np.array(ref))
# calculate the reachset using the trained model
reachsets_ours = []
# reachsets_dryvr = []
for idx_t in range(1, ref.shape[0]):
tmp = torch.tensor(X0.tolist()+[ref[idx_t, 0]]).view(1,-1).float()
if args.use_cuda:
tmp = tmp.cuda()
P = forward_ours(tmp)
P = P.squeeze(0)
reachsets_ours.append([ref[idx_t, 1:], P.cpu().detach().numpy()])
# idx_t = ref.shape[0]-1
# tmp = torch.tensor(X0.tolist()+[ref[idx_t, 0]]).view(1,-1).float()
# print(tmp)
# P = forward_ours(tmp)
# P = P.squeeze(0)
# reachsets_ours.append([ref[idx_t, 1:], P.cpu().detach().numpy()])
print(len(reachsets_ours))
# P = forward_dryvr(tmp)
# P = P.squeeze(0)
# reachsets_dryvr.append([ref[idx_t, 1:], P])
# plot the ref trace
plt.plot(ref[:,2], ref[:,3], 'r-')#, label='ref')
# plot ellipsoids for each time step
# for reachset_ours, reachset_dryvr in zip(reachsets_ours[::10], reachsets_dryvr[::10]):
# label = reachset_ours is reachsets_ours[0]
# c = reachset_ours[0]
# x,y = ellipsoid_surface_2D(reachset_ours[1])
# plt.plot(x+c[0], y+c[1], 'g-', markersize=1, label='NeuReach' if label else None)
# x,y = ellipsoid_surface_2D(reachset_dryvr[1])
# plt.plot(x+c[0], y+c[1], 'y-', markersize=1, label='DryVR' if label else None)
for reachset_ours in [reachsets_ours[-1]]:
label = reachset_ours is reachsets_ours[0]
c = reachset_ours[0]
print(reachset_ours[1])
# projected_reachset = reachset_ours[1][1:3,1:3]
projected_reachset = np.abs(reachset_ours[1][1:3])
# x,y = ellipsoid_surface_2D(projected_reachset)
x,y = rectangular_surface_2D(projected_reachset)
# plt.plot(x+c[1], y+c[2], 'g-', markersize=1, label='NeuReach' if label else None)
plt.plot(x+c[1], y+c[2], 'g-', markersize=1, label='NeuReach' if label else None)
# x,y = ellipsoid_surface_2D(reachset_dryvr[1])
# plt.plot(x+c[0], y+c[1], 'y-', marker
sampled_traces = []
# randomly sample some traces
for i in range(10):
# X0 = config.sample_X0()
# X0 = np.concatenate((center, r))
for _ in range(100):
# n = len(center)
# direction = np.random.randn(n)
# direction = direction / np.linalg.norm(direction)
# dist = np.random.rand()
# x0 = center + direction * dist * r
x0 = config.sample_x0(X0)
_trace = config.simulate(x0)[:,1:]
sampled_traces.append(_trace)
_traces = np.array(sampled_traces)[:,1:,:]
plt.plot(_traces[:,-1,1], _traces[:,-1,2], 'kx', markersize=1)
# plt.xlim(-2, 1)
# plt.ylim(-3, 0)
plt.gca().set_aspect('equal', adjustable='box')
plt.xlabel(r'y')
plt.ylabel(r'$\theta$')
# plt.legend(loc='upper left')
plt.title('Reachsets of lanetracking')
plt.show()
# plt.savefig('lanetracking.pdf')