-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataPrep.py
61 lines (51 loc) · 1.7 KB
/
dataPrep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import random
import torch
import torchvision.transforms as transforms
from PIL import Image
from torch.utils.data import DataLoader
def getDataloader(path):
os.chdir(path=path)
files = os.listdir()
WBC = []
notWBC = []
Data = []
for file in files:
if file.startswith('WBC'):
WBC.append(file)
if file.startswith('not'):
notWBC.append(file)
transform = transforms.Compose([
transforms.Resize((50, 50)),
transforms.ToTensor()
])
for i in range(100):
# Equal number of samples for both classes 0 and 1
if i < 50:
image1 = random.choice(WBC)
while True:
image2 = random.choice(WBC)
if image1 != image2:
break
image1 = Image.open(image1)
image2 = Image.open(image2)
image1 = transform(image1)
image2 = transform(image2)
image1 = image1[:3, :, :]
image2 = image2[:3, :, :]
label = torch.tensor(data=0, dtype=torch.long)
data = {'image1': image1, 'image2': image2, 'label': label}
Data.append(data)
else:
image1 = random.choice(WBC)
image2 = random.choice(notWBC)
image1 = Image.open(image1)
image2 = Image.open(image2)
image1 = transform(image1)
image2 = transform(image2)
image1 = image1[:3, :, :]
image2 = image2[:3, :, :]
label = torch.tensor(data=1, dtype=torch.long)
data = {'image1': image1, 'image2': image2, 'label': label}
Data.append(data)
return DataLoader(Data, batch_size=1)